Реферат: Моделювання теплових процесіів в елементах енергетичного обладнання ТЕС і АЕС шляхом розв’язання спряжених задач теплообміну

Дослідження теплових процесів у східчастих ущільненнях з термокомпенсаційною канавкою з метою знаходження коефіцієнтів тепловіддачі на її поверхнях дозволило одержати структуру течії пари (рис. 4), що у зоні виступів і западин ущільнення збігається з візуалізацією, наведеної в роботі Л. О. Гури. Зокрема, добре видно, що в камерах ущільнення та за виступами формуються циркуляційні області. На виході із щілин, утворених гребенями й поверхнею виступів та западин, спостерігається струминна течія. У камері, до якої входить термокомпенсаційна канавка, струмінь, натікаючи на виступ, відхиляється вгору й роздвоюється. Частина струменя рухається в канавку, формуючи в ній за рахунок масообміну із внутрішньою границею струменя течію уздовж поверхні із двома вихрами в центральній зоні. Зменшення швидкості течії уздовж поверхонь 1-3 канавки формує прикордонний шар, що визначає умови теплообміну на цих поверхнях.

Розв’язання спряжених задач теплообміну в стаціонарній та нестаціонарній постановках дозволило також одержати уявлення про характер розподілу коефіцієнта тепловіддачі (КТВ) на поверхні термокомпенсаційної канавки.

У ході розрахункових досліджень розглянуто два варіанти течії робочого середовища. У першому струмінь натікає на перпендикулярно розташовану поверхню 3 виступу. Частина струменя після його розтікання попадає в порожнину канавки, беручи участь у циркуляційному русі в ній. У другому варіанті течію у канавці формував настилаючий струмінь, утворений коротким гребнем ущільнення. Він натікає на поверхню довгого зубця, а в канавці виникає вихрова течія.

На рис. 5 наведено розподіл КТВ по розгорнутій поверхні термокомпенсаційної канавки. Значення КТВ визначалися, виходячи з локальних значень температури й теплового потоку відповідно до закону Ньютона-Ріхмана. Хвилеподібний характер зміни КТВ на поверхні 2 обумовлений, швидше за все, локально вихровим рухом робочого середовища уздовж поверхні.

У роторах, що відробили 170 – 200 тис. годин, виявлені тріщини в радіальному напрямку донної частини термо-компенсаційних канавок. Ремонт таких роторів може бути проведений шляхом видалення частини металу із тріщиною, що приведе до зміни форми термо-компенсаційної канавки. Деякі варіанти геометричної форми канавок, які доцільно використати для ремонту ротору: варіант I – термокомпенсаційна канавка має збільшений радіус донної частини при збереженні вихідної глибини до центра радіуса; варіант ІІ – канавка має збільшену ширину при збереженні радіуса заокруглення й глибини вихідної канавки. Зміни форми канавки здійснювались за рахунок видалення виступаючої частини й одного короткого гребеня. У цьому випадку ширина канавки подвоюється, а зміна форми донної частини канавки дозволяє знизити коефіцієнт концентрації напружень практично вдвічі.

Для запропонованих форм канавок також були визначені характеристики потоку й знайдені значення КТВ на поверхнях (рис. 6).

Графіки зміни у часі середніх значень КТВ на поверхнях термокомпенсаційних канавок наведені на рис. 7. Значення КТВ для варіантів 1 та 2 стає сталим після прогріву поверхонь канавки протягом перших 80 с з моменту надходження пари в ущільнення. При цьому найбільше значення КТВ для обох варіантів встановлюється на поверхні 3 (для варіанта 1 – 484 Вт/(м2 К), для варіанта 2 – 397 Вт/(м2 К)). Це пов’язано з тим, що струмінь пари, пройшовши камеру, натікає на поверхню 3 під кутом, близьким до 90є, спричиняючи тим самим більш інтенсивний теплообмін на ній у зоні натікання. Більш низький рівень КТВ на поверхнях канавки для варіанта 2 обумовлений меншою інтенсивністю вихрової течії в ній.

Для запропонованих форм канавок (варіанти I та ІІ) зміна КТВ у часі набуває стаціонарного характеру після 800 с від початку надходження пари в ущільнення. Максимальне значення КТВ для поверхні 3 дорівнює 353 Вт/м2 К для обох варіантів. Більш низький рівень значень КТВ та уповільнене в часі досягнення стаціонарного значення для І та ІІ варіантів виконання термокомпенса-ційної канавки приводить до зниження градієнта температури поблизу поверхні та, як наслідок, до зниження температурних напружень у місцях радіусних переходів від стінок до дна канавки.

За отриманими у дисертаційній роботі розподілами КТВ на поверхнях термокомпенса-ційних канавок фахівцями відділу вібраційних та термоміцнісних досліджень ІПМаш НАН України було проведене дослідження термонапруженого стану поверхонь роторів у районі термокомпенсаційних канавок, оцінений вплив форми й розміру канавок, спрацьовування ресурсу ротора за фактором малоциклової втоми при роботі турбіни в режимах пікового високоманевреного навантаження, що показало зниження інтенсивності напружень та вплив форми канавки на збільшення ресурсу ротора.

Продовження ресурсу турбіни можливо також за рахунок більше точного ведення графіка навантаження енергоблоків та дотримання темпів навантаження та розвантаження. З цією метою розроблена інформаційна система моніторингу (ІСМ) навантаження енергоблоків, що була впроваджена на Харківській ТЕЦ-5. ІСМ навантаження енергоблоків виконує такі основні функції:

– забезпечує можливість проведення моніторингу активного навантаження й поточного вироблення електроенергії;

– формує рекомендації з найбільш ефективної зміни навантаження відповідно до погодинного графіка, з огляду на максимально припустимі швидкості навантаження (розвантаження) блоку;

– забезпечує збір статистичної інформації про роботу енергоблоків, тобто даних за рівнем і зміною активного навантаження, а також з виконанню добових графіків, що задає Енергоринок.

Як наслідок, ці функції приводять до виключення штрафних санкцій з боку Енергоринку електроенергії, знижуючи відсоток припустимих відхилень у процесі навантаження, розвантаження енергоблока.

У четвертому розділі наведені основні результати дослідження теплового стану контейнерів сухого зберігання ВЯП шляхом розв’язання спряжених задач теплообміну в тривимірній стаціонарній постановці.

Розглянуто вентильований бетонний контейнер (ВБК) для зберігання ВЯП марки VSC-24, що широко використовується на багатьох АЕС світу, а також визначені умови експлуатації контейнера на площадці ССВЯП.

Проведено оцінку необхідності урахування променистого теплообміну при моделюванні теплового стану вентильованого контейнера зберігання ВЯП, що показала необхідність доповнення математичної моделі рівнянням променистого теплообміну.

У розділі досліджено тепловий стан окремо розташованого контейнера в штильових умовах та при вітровому впливі, а також групи контейнерів з урахуванням їхнього взаємного впливу. Температурне поле окремо розташованого контейнера в штильових умовах при температурі зовнішнього повітря Tн = 24°С наведене на рис. 8. При урахуванні вітрового впливу – рівномірного за висотою потоку повітря – на окремо розташований контейнер розглядалося три варіанти напрямку вітру щодо нижніх вхідних вентиляційних каналів. Виявлено структуру руху повітря у вентиляційних каналах контейнера (рис. 9) і показано, що при всіх розглянутих напрямках вітру максимальна температура оболонок ТВЕЛів у центрі кошика зберігання не перевищує максимально припустиму, встановлену при проектуванні контейнерів.

Оскільки дослідження теплового стану контейнерів проводяться із залученням чисельних методів розв’язання системи диференціальних рівнянь, через обмеженість чисельних ресурсів ЕОМ виникають складності з побудовою розрахункової сітки для групи контейнерів. У зв'язку із цим поставлена задача вирішувалася у два етапи.

На першому етапі вирішувалась спряжена задача передачі тепла від кошика зберігання тепловиділяючих зборок до циркулюючого в бетонному контейнері охолоджуючого повітря.

На другому етапі розглядалась спряжена задача передачі тепла від бетонного контейнера (з урахуванням визначеного на першому етапі його теплового стану) у навколишнє середовище.

У першу чергу, при змінних зовнішніх граничних умовах визначаються такі характеристики повітряного потоку, що впливають на тепловий стан ТВЕЛів, розташованих в ВТВЗ усередині багатомісного герметичного кошика (БГК):

– структура повітряного потоку у вихідних вентиляційних каналах ВБК;

– зміна температури повітряного потоку в кільцевому каналі між кошиком зберігання та ВБК з урахуванням теплообміну випромінюванням при відводі тепла від кошика зберігання;

– умови теплообміну в кільцевому каналі між кошиком зберігання та ВБК з урахуванням зміни структури повітряного потоку при впливі вітру на потік нагрітого повітря, що витікає з вихідних вентиляційних каналів ВБК;

– рівень нагрівання повітря в кільцевому каналі між кошиком зберігання та контейнером.

Отримані дані, що впливають на тепловий стан ТВЕЛів усередині МГК, використовуються в подальшому для:

– організації ітераційного процесу визначення структури повітряного потоку, що обтікає контейнери, та його температури при змішуванні з нагрітим повітрям, що витікає з вихідних вентиляційних каналів ВБК;

– розв’язання спряженої задачі передачі тепла від ВБК у навколишнє середовище.

К-во Просмотров: 205
Бесплатно скачать Реферат: Моделювання теплових процесіів в елементах енергетичного обладнання ТЕС і АЕС шляхом розв’язання спряжених задач теплообміну