Реферат: Молекулярная нанотехнология и перспективы её развития
МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО АТОМНОЙ ЭНЕРГИИ.
СНЕЖИНСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ (ПРИ МОСКОВСКОМ ИНЖЕНЕРНО-ФИЗИЧЕСКОМ ИНСТИТУТЕ).
КАФЕДРА ЭКОНОМИЧЕСКИХ И ГУМАНИТАРНЫХ ДИСЦИПЛИН.
Реферат по философии на тему:
Молекулярная нанотехнология
и перспективы её развития.
Соискатель: Ионов Г.В.
Руководитель: Волченкова М.Б.
Оглавление.
I Введение. Молекулярная нанотехнология. 3
II Перспективы развития и проблемы молекулярной нанотехнологии. 4
1 Оружие. 7
2 Выход из-под контроля молекулярных систем. 9
3 Человек будущего. 12
4 Бессмертие. 19
III Заключение. Что нас ждёт в будущем. 22
Список литературы. 23
Введение. Молекулярная нанотехнология.
Недавно возникшее научное направление, которое называется “молекулярная нанотехнология”, открывает невиданные ранее, фантастические перспективы взаимодействия человека с миром, которые порождают огромное количество проблем философского характера. Не завершит ли цивилизация свой путь под ударом нового оружия? Не взбунтуется ли природа против людей? Как будет эволюционировать человек, как вид? Станет ли он бессмертным? – эти несколько вопросов в ряду других возникают, если представить себе возможности молекулярной нанотехнологии.
К сожалению, пока не существует широко известных чисто философских работ, посвящённых этому новому научно-техническому направлению. Отсутствие таких работ, по-видимому, связано с малой известностью для широкого круга людей возможностей молекулярной нанотехнологии.
Реферат написан большей частью на основе научно-фантастических произведений Станислава Лема и братьев Стругацких. Научная фантастика устремлена в будущее и предсказывает философские аспекты ещё не совершённых научных открытий. Таким образом, написанный на заре возникновения молекулярной нанотехнологии роман “Осмотр на месте” практически исчерпывает философские и отчасти технические проблемы этого только сейчас зарождающегося направления развития науки и техники.
Значительное влияние на содержание реферата оказали работы посвящённые русскому философу конца прошлого века Николаю Фёдоровичу Фёдорову. Этот мыслитель, повлиявший на мировоззрение многих великих людей (К.Э. Циолковского, Л.Н. Толстого, Ф.М. Достоевского, Вл. Соловьева, Фета, Чижевского и др.), выдвинул идею “общего дела” всех людей – борьбу со смертью. Молекулярные нанотехнологии могут дать реальную почву для этого дела.
Работы Эрика Дрекслера – пионера молекулярной нанотехнологии несут в основном научно-популярный характер, но при этом глубоко отражают все технические проблемы, которые сейчас стоят перед нанотехнологией. Безусловно, чтение этих работ необходимо для ясного понимания того, что могут делать наномашины, как они будут работать и как их построить.
Очень интересна статья Б.Хасслахера и М.Тилдена “Живые машины”. Возможно, методы конструирования “биоморфов” – эволюционирующих машин, могут пригодиться при создании молекулярных наномашин.
Перспективы развития и проблемы молекулярной нанотехнологии.
Технический прогресс направлен в сторону разработки более мощных, быстрых, компактных и изящных машин. Пределом такого развития можно считать машины, размером с молекулу. Машина, построенная из ковалентно связанных атомов, чрезвычайно прочна, быстра и мала. Разработкой, созданием и управлением такими машинами занимается молекулярная нанотехнология.
Слово “нанотехнология” указывает на то, что характерные пространственные размеры процессов, протекающих под управлением молекулярных машин, равны нескольким нанометрам, то есть нескольким десяткам характерных размеров атома. На таких микроскопические размерах законы “здравого смысла” начинают давать сбои и вступают в силу законы квантовой механики, часто приводящие к “идеальному” поведению системы. Например, исчезает трение в макроскопическом смысле слова, детали абсолютно не изнашиваются, от машины не может “отколоться кусочек” меньше одного атома, две одинаковые машины в одном состоянии абсолютно идентичны, так, что их невозможно различить даже мысленно.
Один грамм наномашин, каждая размером около 10 нанометров, может содержать 1019 штук, причём их детали могут совершать более 1012 циклических перемещений в секунду. Возможно поэтому Станислав Лем назвал молекулярные машины шустрами . Наномашины могут работать с отдельными атомами и даже электронами, расщепляя одни молекулы и синтезируя новые.
Таким образом, молекулярная нанотехнология открывает возможность делать просто сказочные вещи:
1. Изучение микромира на новом уровне. Исследователь сможет видеть и манипулировать отдельными атомами и молекулами, в том числе и с помощью техники виртуальной реальности с обратной связью, дающей возможность ощущать атомы и молекулы в руках в виде упругих сгустков больших размеров. Практически мгновенно можно будет исследовать микроструктуру любого материала, и сделать химический анализ любого вещества.
2. Обработка информации. Вычислительная мощность компьютеров возрастёт на много порядков. Компьютеры смогут воспринимать и выдавать информацию в любом материальном виде. Существование мощной обратной связи между информационными системами и внешним миром, а также развитие нанонейросетей неизбежно приведёт к возникновению искусственного интеллекта.
Станет возможным сбор рассеянной в окружающей среде информации и восстановление прошедших событий. К сожалению (а может быть – к счастью), прогноз на достаточно отдалённое будущее, например, погоды, по прежнему будет неточным из-за реальной физической случайности квантовых явлений и сильной неустойчивости многих процессов, текущих в природе.
Эти два пункта – возможность манипулировать атомами и переработка огромного количества информации, создают предпосылки для следующих “чудес”:
· Производство объектов. Изготовление объекта, будь-то кристалл алмаза, стальной шарик, сапоги, компьютер, кусок хлеба, куриное яйцо (сырое) или человек Вася Иванов в 17.45 года от рождения, принципиально не будет ничем отличаться. Самое сложное – это спроектировать производство объекта, то есть создать всю необходимую информацию о том, как из груды мусора, содержащей необходимые элементы в нужном количестве (ядерный синтез наномашинам будет не под силу), построить объект. После этого производство не будет требовать никаких затрат, кроме подвода энергии, мусора и откачки энтропии в виде тепла. При этом спроектировать производство кристалла алмаза несравненно легче, чем куска хлеба, так как кристалл алмаза содержит ничтожно мало информации по сравнению с куском хлеба. А спроектировать производство взрослого человека ещё намного сложнее, но даже это не кажется невозможной задачей.
При таком способе производства исчезнет промышленность и сельское хозяйство. Чтобы получить нужную вещь достаточно будет дать указание персональному компьютеру материализовать объект из его обширной памяти или из мировых ресурсов памяти.
· Медицина. Создание молекулярных роботов-врачей, которые "жили" бы внутри человеческого организма, устраняя все возникающие повреждения, или предотвращали бы возникновение таковых, включая повреждения генетические. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и "облагораживания" тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики и, возможно, мумифицированных.
· Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, противостоящими искусственно вызванным и естественным нежелательным процессам, текущим в природе, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Сбор рассеянных элементов в земной коре и даже из космоса. Например, добыча золота или трития (если тогда будут нужны термоядерные электростанции).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--