Реферат: Момент импульса и его свойства
В предыдущем разделе мы уже получили многие важные соотношения, касающиеся момента импульса и его проекций. В этой главе будет доведено до конца решение задачи о квантовании момента количества движения пространственного ротатора и рассмотрены его свойства.
4.3.6.1 .Согласно (4.75), не существует состояния объёмного ротатора с . Поэтому при действии на волновую функцию с максимально возможным значением
, т.е.
, оператор повышения
становится аннигилятором – "уничтожителем"
. (4.95)
Совершенно так же оператор уничтожает состояние с
.(4.96)
4.3.6.2. Чтобы от оператора сдвига , не имеющего собственных значений, перейти к одному из операторов с конкретными собственными значениями
и
достаточно умножить (4.95) слева на
и воспользоваться формулой (4.93):
.(4.96)
Отсюда на основании (4.64) и (4.91) следует
, т.е.
(4.98)
4.3.6.3. В силу того, что постоянная определяет квадрат модуля момента импульса, она может быть только положительной величиной, либо равной нулю
и, соответственно,
(4.99)
При дискретных допустимых значениях l его минимальная величина равна нулю, а все остальные сдвигаются последовательно на единицу вверх
или
(4.100)
4.3.6.4. Этим охарактеризованы все свойства момента импульса при свободном вращении, а также и при вращательном движении на эквипотенциальной сферической поверхности. Квадрат модуля , сам модуль вектора
и возможные его проекции на ось z определяются формулами
, где
, т.е.
(4.101)
(4.102)
, где
т.е.
.(4.103)
Таким образом, всякому конкретному значению модуля момента импульса отвечает
возможное значение проекции
, т.е. каждому уровню вращательной энергии соответствует
возможных состояний пространственного ротатора. Уровень, определяемый квадратом момента импульса
, соответственно,
кратно вырожден,
4.3.6.5 . В то время как проекция имеет конкретное значение, две другие проекции
и
, как мы говорили выше, остаются неопределенными. Это имеет наглядный физический смысл, который наиболее понятен из графической иллюстрации. На рис. 4.4 представлены возможные ориентации вектора
при l = 2. Угол наклона вектора
к оси z определяется формулой
(4.104)
т.е, и угол
никогда не равен 0. Это означает, что вектор
совершает прецессионное движение вокруг оси z .
4.3.6.6. Обращаем еще раз внимание читателя на то, что такая ситуация порождена принципом неопределенности. Да и сама формула квантования момента импульса пространственного ротатора (4.102) в которой величина не просто пропорциональна квантовому числу l , а имеет более сложный вид, является по сути следствием этого принципа.
4.3.7. Энергетические уровни жесткого ротатора и его спектр
4.3.7.1. Поскольку квадрат момента импульса в жестком ротаторе однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т ), т.е. уровни, выраженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения
(4.105)
.(4.105)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--