Реферат: Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)

Найдем корень уравнения

.

Рисунок 1. Функция

Будем искать простой корень уравнения, находящийся на отрезке локализации [-0.4,0].

Приведем уравнение к виду x=f(x), где


.

Проверим условие сходимости:

.

Рисунок 2. График производной

Максимальное по модулю значение производной итерационной функции достигается в левом конце отрезка

.

.

Выполним 3 итерации по расчетной формуле

x= (x),

1 итерация .

2 итерация .

3 итерация .


2. Математические и алгоритмические основы решения задачи

2.1 Описание метода простых итераций

Рассмотрим уравнение

f(x)=0 (2.1)

с отделенным корнем X[a, b]. Для решения уравнения (2.1) методом простой итерации приведем его к равносильному виду:

x=φ(x). (2.2)

Это всегда можно сделать, причем многими способами. Например:

x=g(x) · f(x) + x ≡ φ(x),

где g(x) - произвольная непрерывная функция, не имеющая корней на отрезке [a,b].

К-во Просмотров: 267
Бесплатно скачать Реферат: Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)