Реферат: Нахождение кратчайшего пути

3. В связном графе любые две простые цепи максимальной длины имеет по крайней мере одну общую вершину.

4. В графе с N вершинами и К компонентами связности число рёбер не превышает 1/2(N-K)(N-K+1).

5. Пусть у графа G есть N вершин . Пусть D(G)- минимальная из степеней вершин этого графа . Тогда D(G) > 1/2 (N-1).

29. Связный граф без циклов называется деревом .

Деревья особенно часто возникают на практике при изображении различных иерархий. Например, популярные генеалогические деревья.

Пример(генеалогическое дерево): На рисунке показано библейское генеалогическое дерево.

Эквивалентные определения дерева.

1. Связный граф называется деревом, если он не имеет циклов.

2. Содержит N-1 ребро и не имеет циклов.

3. Связный и содержит N-1 ребро.

4. Связный и удаление одного любого ребра делает его несвязным.

5. Любая пара вершин соединяется единственной цепью.

6. Не имеет циклов и добавление одного ребра между любыми двумя вершинами приводит к появлению одного и только одного цикла.

Раскраска графов

Раскраской графа G = (V,E) называется отображение D: V ® N . Раскраска называется правильной , если образы любых двух смежных вершин различны: D (U) ≠ D (V), если (U, V) Î I. Хроматическим числом графа называется минимальное количество красок, необходимое для правильной раскраски графа.

Теорема 5.

Граф является планарным тогда и только тогда, когда он не содержит подграфа, изоморфного одному из следующих (графы Понтрягина - Куратовского).


???? ?33 ???? ?5

Свойство: В любом планарном графе существует вершина, степень которой<=5.

Способы задания графов:

1. Геометрический:

2. Матрица смежности:

a

В

c

d

A

0

1

1

0

B

К-во Просмотров: 618
Бесплатно скачать Реферат: Нахождение кратчайшего пути