Реферат: Нахождение оптимальных планов производства продукции и их экономико-математический анализ

2. Двойственной к данной задаче является следующая:

Целевая функция:

maxF = 15.3y1+1758y2+118y3+45.8y4+660.8y5+18.8y6+5y7-20y8+15y9-35y10+

35y11-60y12+10y13-20y14

при ограничениях:

1.34y1+ 78y2+ 0.7y3+3.1y4+ 4y5+0.87y6+y7-y8 <=0.51

1.9y1+ 356y2+ 5.9y3+9.1y4+ 2y5+0.87y6+y7-y8 <=0.57

0.37y1+ 14y2 +6.2y3+ y4+ 5y5+ 0.8y6+ y9-y10 <=0.13

0.49y1+ 116y2+17.7y3+2.2y4+45y5+0.85y6+ y9-y10 <=0.33

0.52y1+ 65y2+ 5.7y3+2.3y4+15y5+0.85y6+ y9-y10 <=0.38

0.2y1+ 19y2+ 1.5y3+0.5y4+15y5+0.26y6+ y11-y12 <=0.72

0.26y1+ 12y2+ 0.5y3+0.4y4+ 0.24y6+ y13-y14 <=0.23

0.12y1+ 9y2+ 0.4y3+ 13y4+ 0.12y6+ y13-y14 <=0.22

0.9y1+112y2+ 15y3+ 0.87y6+y7-y8 <=0.67

Данные задачи составляют пару двойственных задач. Решение прямой задачи дает оптимальный план минимизации расходов на рацион кормления, а решение двойственной задачи – оптимальную систему оценок питательной ценности используемых кормов.

3. Для решения прямой задачи воспользуемся пакетом LINDO.

Пакет установлен на диске Е: в каталоге \LINDO. Для его загрузки активизируем данный каталог и находим файл с именем lindo.exe.

Вначале необходимо ввести целевую функцию F. Для этого после двоеточия (:) набираем слово max и после пробела вводим целевую функцию. После знака вопроса набираем ST и вводим ограничения. В конце набираем END.

Для просмотра всей задачи используют команду LOOK ALL, а для просмотра строки - LOOK < N строки >.

При необходимости можно произвести редактирование той или иной строки путем набора команды ALT < N строки > и изменять либо значения переменных (VAR), либо правых частей (RHS), либо направление оптимизации с max на min и наоборот.

Решение производится вводом команды GO, а для проведения послеоптимизационного анализа после (?) нажимают Y.

После введения задачи и набора команды GO получаем следующие результаты:

OBJECTIVE FUNCTION VALUE

32, 1779200

VARIABLE VALUE REDUCED COST
x1 3.943977 0
x2 1.056023 0
x3 13.927200 0
x4 1.072801 0
x5 0 0.193695
x6 35 0
x7 0 0.009258
x8 10 0
x9 0 0.169071
ROW SLACK OF SURPLUS DUAL PRICES
2 5.870109 0
3 0 0.000247
4 52.828530 0
5 139.823500 0
6 0 0.004369
7 7.903641 0
8 0 0.473236
9 15 0
10 0 0.104691
11 20 0
12 0 0.649760
13 25 0
14 0 0.217775
15 10 0

Nо. ITERATIONS = 12

4. Из полученного решения исходит, что минимальные затраты на составление рациона питания, содержащего все необходимые элементы составляют 32, 18 денежных единиц. То есть целевая функция:

minZ = 0.51*3,943977+0.57*1,056023+0.13*13,9272+0.33*1,072801+

+0.72*35+0.22*10=32,17792

Оптимальный рацион питания:

К-во Просмотров: 226
Бесплатно скачать Реферат: Нахождение оптимальных планов производства продукции и их экономико-математический анализ