Реферат: Нанотехнология в электротехнических и радиоэлектронных материалах

Рис. 11. Измерения распределения размеров частиц проводящего полимера, диспергированного в органической жидкости, при освещении лазерным лучом. Размеры лежат в диапазоне от 9 до 30 нм с максимумом при 12 нм.

Частицы с размерами менее 2 нм удобно измерять масс-спектрометром. Схема типичного газового масс-спектрометра представлена на рис. 12. Наночастицы ионазаруют бомбардировкой электронами, испускаемыми разогретым катодом f в ионизационной камере I . Эти положительные ионы ускоряются разностью потенциалов V между выталкивающей R и ускоряющей A пластинами, затем системой линз L , диафрагмируются щелью S и затем поступают в масс-анализатор. Магнитное поле В анализатора, ориентированное перпендикулярно плоскости рисунка, действует на частицы с силой , которая искривляет пучок на 90º с радиусом r , после чего он попадает на коллектор ионов. Отношение массы частицы т к ее заряду q дается выражением

Рис.12. Схема масс-спектрометра, использующего 90º магнитный масс-анализатор.

Показаны детали источника ионов: А – ускоряющая пластина или экстрактор, Е – электронная ловушка, f – нить накаливания, I – ионизационная камера, L – фокусирующие линзы, R – отражатель частиц, S – щели. Магнитное поле в масс-анализатое перпендикулярно плоскости рисунка.

В каждой конкретной установке радиус кривизны r обычно фиксирован, так что для фокусировки на детекторе ионов разных масс изменяют либо магнитное поле, либо ускоряющее напряжение. Заряд наноразмерных ионов обычно известен, так что практически определяется их масса. Так как материал наночастиц также известен, то определена и их плотность , а, следовательно, линейный размер можно оценить как кубический корень из объема:

.

Описанный масс-спектрометр использует стандартную конфигурацию магнитного поля масс-анализатора. Современные масс-спектрометры могут иметь другие конфигурации поля, например квадрупольную, или масс-спектрометр на основе измерения времени пролета, у которого каждый ион получает одинаковую кинетическую энергию во время ускорения в ионизационной камере, так что более легкие ионы движутся быстрее и достигают детектора раньше, чем более тяжелые ионы, обеспечивая таким образом разделение по массе.


Список литературы

1. Арсеньев П.А., Евдокимов А.А, Матвеева А.Г., Яштулов Н.А. Введение в нанотехнологию: проблемы материаловедения, экономики и экологии.

2. Журнал Наука и жизнь, 1989 г, №9, Атомный силовой микроскоп.

3. Чадеева М. Туннель в наномир.

4. Пул Ч., Оуэнс Ф. Нанотехнологии.

5. Воронцов В.А., Васильева Н.Д., Определение параметров ближнего порядка в расположении атомов аморфных веществ по данным электронографических исследований.

6. Колчин В.В. Курс лекций Нанотехнология электротехнических и радиоэлектронных материалов и изделий.

К-во Просмотров: 226
Бесплатно скачать Реферат: Нанотехнология в электротехнических и радиоэлектронных материалах