Реферат: Направляющие системы передачи ВОЛС
,
где и
- относительные соответственно диэлектрическая и магнитная проницаемости.
Учитывая, что относительная магнитная проницаемость прозрачного вещества обычна постоянна и равна единице, показатель преломления определится: для сердечника , для оболочки
. Показатель преломления оболочки постоянен, а сердечника в общем случае является функцией поперечной координаты. Эту функцию называют профилем показателя преломления.
Для передачи электромагнитной энергии по световоду используется известное явление полного внутреннего отражения на границе раздела двух диэлектрических сред, поэтому необходимо, чтобы n1 >n2 .
Рассмотрим случай, когда луч света, распространяющийся в среде с показателем преломления n1 , встречает границу раздела со средой, имеющей меньший показатель преломления n2 (рис. 4).
В соответствии с законом Снеллиуса , угол
в среде с меньшим показателем преломления больше, чем угол падения
. При возрастании
возрастает и
, и поскольку
больше
,
станет равным 900 раньше, чем
. Угол падения, для которого преломленный луч скользит по поверхности раздела ( то есть, для которого
=900 ), называется углом
полного внутреннего отражения. Угол полного внутреннего отражения рассчитывается по формуле (см. закон Снеллиуса, полагая, что
=900 ):
.
Если угол падения больше (луч 3), то луч не заходит во вторую среду, а полностью отражается вовнутрь первой среды. Именно этот принцип полного внутреннего отражения позволяет оптическим волокнам проводить свет.
В зависимости от величины угла , который образует с осью лучи, выходящие из точечного источника в центре торца световода (рис. 3), возникают волны излучения 1, волны оболочки 2 и сердечника 3. В сердечнике и оболочке существует два типа лучей: меридиональные, которые пересекаются в некоторой точке с осью световода, и косые, которые с осью световода не пересекаются. Здесь показаны только мердиональные лучи. Если угол падения электромагнитной волны на границу сердечник-оболочка больше угла полного внутреннего отражения, то луч полностью отражается на границе и остается внутри сердечника (луч 3).
Такое объяснение направляемости света основано на законах геометрической оптики и не учитывает свойств света как электромагнитной волны. Учет волновых свойств позволил установить, что из всей совокупности световых лучей в пределах угла полного внутреннего отражения для данного световода только ограниченное число лучей с дискретными углами может образовывать направляемые волны, которые называют также волноводными модами. Эти лучи характеризуются тем, что после двух последовательных переотражений от границы сердцечник-оболочка волны должны быть в фазе. Если это условие не выполняется, то волны интерфирируют так, что гасят друг друга и исчезают. Каждая волноводная мода обладает характерной для нее структурой электромагнитного поля, фазовой и групповой скоростями.
Волны излучения рапределяются непрерывно по всей принадлежащей им области углов и образуют непрерывный спектр. Волны оболочки и волны излучения - паразитные волны, которые отбирают энергию источника возбуждения и уменьшают полезную энергию, передаваемую по сердечнику. Эти волны трудно полностью исключить при возбуждении световода. Кроме того, они также возникают на геометрических нерегулярностях световода и неоднородностях материала.
В зависимости от числа распространяющихся на рабочей частоте волн (мод) световоды разделяют на одно- и многомодовые. Число мод зависит от соотношения диаметра сердечника световода и длины волны и рассчитывается по формуле
,
где а- радиус сердечника волокна,
- длина волны света,
- относительная разность показателей преломления.
.
Так как n1 и n2 имеют очень близкие значения, номинальная величина для большинства оптических волокон находится в пределах
= 0,28 - 2,1%.
Достоинством одномодовых световодов являются малая дисперсия (искажение сигналов), большая информационно-пропускная способность и большая дальность передачи. Одномодовые системы являются наиболее перспективным направлением развития техники передачи информации.
В многомодовых световодах импульс на приеме уширяется и искажается. Дисперсия в многомодовых световодах существенно ограничивает полосу передаваемых частот и дальность передачи.
Для характеристик световода важное значение имеет профиль показателя преломления в поперечном сечении. Если сердечник световода имеет постоянное по радиусу значение показателя преломления, то такие световоды называются световодами со ступенчатым профилем показателя преломления (наблюдается ступенька n на границе сердечник-оболочка).
Для борьбы с уширением импульсов в оптических волокнах со ступенчатым профилем показателя преломления разработан другой тип многомодового волокна, который нашел гораздо более широкое применение в дальней связи - оптические волокна с градиентным профилем показателя преломления. В таких стекловолокнах показатель преломления от центра сердечника к краю изменяется плавно. Ход лучей в градиентном световоде показан на рис. 6.
Лучи теперь изгибаются в направлении градиента показателя преломления (вместо преломления либо полного отражения, как в случае волокна со ступенчатым профилем).
В показатель преломления для градиентных световодов описывается функцией
,
где r - текущий радиус;