Реферат: Напряженное состояние земной коры
Введение
Напряженное состояние земной коры характеризует не только сами поверхностные слои, которые можно наблюдать непосредственно, но и более глубинные части земной коры, причем величина напряжения составляет несколько сот мегапаскалей (МПа). Тот факт, что горные породы испытывают большие напряжения, уже давно хорошо известен. Строители тоннелей столкнулись с ним еще в прошлом столетии. С того времени и началось изучение напряженного состояния массивов горных пород. Установлено, что напряжения обладают не только вертикальной, но и горизонтальной компонентой. Изучение напряженного состояния земной коры на всю ее глубину в целом и массивов горных пород имеет не только важное научное, но и практическое значение. Знание напряженного состояния массивов горных пород позволяет в несколько раз увеличить надежность подземных сооружений. Поскольку все тектонические процессы связаны с действующим в каждый момент времени полем напряжения в земной коре, знание этого поля в настоящее время и геологическом прошлом необходимо для понимания геологических явлений.
В настоящем реферате мы проанализируем сущность напряженного состояния земной коры и ее влияние на планирование и ведение хозяйственной деятельности региона в котором наблюдается данное явлеие.
Основная часть
Источники напряжений в земной коре можно разделить на три группы:
1-я группа – это факторы, связанные с эндогенными, то есть внутренними, процессами, происходящими не только в земной коре, но также и в мантии Земли. Именно эти процессы генерируют как глобальное поле напряжений Земли, так и тектонические движения в земной коре;
2-я группа источников напряжений связана с экзогенными факторами, такими, например, как покровные оледенения, нагрузка искусственных водохранилищ, эрозионная деятельность рек, откачка нефти, газа, воды с глубин в первые километры. В формировании глобального поля напряжений эта группа факторов играет меньшую роль;
3-я группа факторов связана с космическими источниками, например с ротационными силами Земли или силами, возникающими при быстром, практически скачкообразном изменении скорости вращения планеты, а также с приливным воздействием Луны.
Из всех перечисленных источников самый существенный вклад в общее поле напряжений вносят эндогенные процессы, которые и формируют поля напряжений разных рангов.
Какие же процессы вызывают напряженное состояние в земной коре и мантии Земли? Наиболее важное значение имеет термогравитационная неустойчивость вещества мантии Земли до глубин 2900 км, в особенности астеносферного слоя, в котором вязкость на 2–3 порядка меньше, чем в вышележащих слоях верхней мантии и земной коры. Медленные движения вещества астеносферного слоя через вязкое трение передают усилия в вышележащую часть мантии и земную кору, то есть в литосферу, вызывая в ней напряжения и соответственно деформации. Напряжения могут возникать вследствие восходящих и нисходящих конвективных струй в мантии Земли, по некоторым предположениям образующих двухъярусную систему конвективных ячеек. Реальное существование подобных очень медленных струйных потоков в мантии Земли подтверждается различными данными, и в первую очередь сейсмотомографией – специальными сейсмическими методами, позволяющими благодаря тонким расчетам выявить неоднородности в мантии, то есть ее участки, обладающие различной плотностью, а следовательно, и температурой. Результаты сейсмотомографии подтверждаются и наблюдениями над силой тяжести, резкие аномалии которой выражены как раз в тех местах, где предполагается погружение или подъем вещества мантии. Например, такие узкие, но весьма контрастные положительные и отрицательные гравитационные аномальные зоны приурочены к глубоководным желобам и молодым горно-складчатым сооружениям в Андах, Индонезии, Алеутской, Курильской, Японской и других островных дугах.
В горных областях подобного типа гравитационные аномалии обычно положительны, что свидетельствует об избытке масс, которому должно отвечать увеличение давления на глубинах примерно от 50 до 100 км, что и является источником напряжений в литосфере и земной коре. Создаваемое давление значительно превышает нормальное литостатическое, то есть давление, вызванное весом вышележащих пород.
Сейсмофокальные зоны – участки в земной коре и верхней мантии, в которых очаги землетрясений фиксируются до глубин 500–600 км, также свидетельствуют о наличии сильнейшего сжатия в тех местах, где океанская, более тяжелая и холодная кора погружается (субдуцирует) под континентальную, более легкую. Неоднородности верхней мантии, выявляемые под срединно-океаническими хребтами и древними платформами, также являются источниками напряжений в литосфере и земной коре. Поскольку современная поверхностная структура Земли определяется перемещением литосферных плит, то и напряжения сжатия-растяжения концентрируются в участках плит, имеющих соответствующий геодинамический режим. В срединно-океанических хребтах, в области дивергентных границ преобладает растяжение, а в зонах субдукции (конвергентных границ) – сжатие. Жесткость (прочность) литосферных плит позволяет передавать напряжения, возникшие в одной ее части, на другие, находящиеся в нескольких тысячах километров от первых. Взаимодействие литосферных плит вносит наибольший вклад в создание современного поля напряжений в самой верхней оболочке Земли. При более детальном рассмотрении устанавливается еще большее количество факторов, вызывающих локальные поля напряжений. Например, постоянно действующая сила гравитации, которая хоть сама и не производит тектонической работы, но влияет на формирование местного поля напряжений. Дополнительные источники напряжений в земной коре связаны с участками разогрева, местного плавления, вулканизма. Однако возникающие при этом термонапряжения действуют на ограниченном пространстве, лишь искажая более обширное поле напряжений.
Дополнительные напряжения в земной коре вызываются контрастным рельефом, растущими горными сооружениями. Вес последних влияет на формирование напряжений в соседних участках литосферы, которая упруго реагирует на эту нагрузку. Локальные напряжения могут быть созданы движением подземных вод или каких-либо иных флюидов. Напряжения в литосфере, возникающие в результате экзогенных процессов, существенно меньше напряжений, вызываемых эндогенными причинами.
Космические факторы, в частности ротационные силы, создают напряжения, не превышающие 0,1 Па, а приливные силы в результате взаимодействия Луны, Солнца и Земли провоцируют напряжения до 10 Па, в то время как эндогенные силы формируют поля напряжений в несколько сот мегапаскалей.
Существует несколько методов измерения напряженного состояния земной коры, обладающих различной точностью. Следует заметить, что когда мы говорим о напряжении в горных породах, то подразумеваем отклонение от литостатического всестороннего давления, обусловленного весом столба горных пород на единицу площади, которое равно примерно 27Н МПа, где Н – глубина (в км).
Важную роль играют сейсмологические методы, основанные на выявлении главных осей напряжений в очагах землетрясений согласно кинематическим параметрам сейсмических волн, улавливаемых несколькими сейсмостанциями. Таких измерений сейчас произведено около 7 тыс.
Напряженное состояние горных пород меняет их различные геофизические характеристики: магнитные, электрические, плотностные, скорости распространения сейсмических волн. Измеряя аномальные значения этих характеристик, получают информацию о напряженно-деформированном состоянии горных пород. Существуют и чисто теоретические методы, позволяющие рассчитывать напряженное состояние литосферы, однако они весьма приблизительны. Широко используются также геологические методы, в том числе дистанционные, то есть дешифрирование аэро- и космических снимков с целью выявления зон разрывов и трещин, сформировавшихся под влиянием определенного напряженного состояния земной коры.
Особняком стоят методы оценки напряженного состояния горных пород по материалам наблюдений в буровых скважинах и горных выработках. Для измерений формы поперечного сечения скважин применяют кварцевые деформографы, при помощи которых можно выявить деформации, а соответственно и напряжения по трем направлениям, расположенным взаимно перпендикулярно. Тем самым появляется возможность измерить тензор напряжений в одной точке. Такие измерения составляют около 30% всех имеющихся данных.
Существуют и другие методы изучения напряжений в керне (в столбике извлеченной породы) скважин, например: метод дискования керна, метод разгрузки, метод акустического каротажа, позволяющие определять остаточные упругие деформации в породах. Но эти методы весьма трудоемки.
Достаточно уверенно определяются поля напряжений в горизонтальных и вертикальных выработках, что имеет большое практическое значение. Хорошо известны так называемое стреляние пород и разрушение горных выработок – штолен, штреков, шахт, – возникающие под воздействием горного давления. Если горная выработка ориентирована в направлении максимального сжимающего напряжения, она наиболее устойчива. Но стоит ее сориентировать поперек сжимающих напряжений, как стенки, например штольни, начнут стрелять кусками горной породы и разрушаться. Существуют разнообразные инструментальные методы, при помощи которых наблюдают за аномальными напряжениями в горных выработках.
И наконец, деформации земной поверхности, обусловленные полем напряжений, изучают геодезическими методами, наклономерами. Все они дают возможность выявить деформации и поля напряжений в поверхностных слоях. Однако в более глубоких горизонтах земной коры ориентировка и величина напряжений могут быть совсем другими, и в этом заключается причина ограниченности геодезических методов.
Таким образом, существуют разнообразные способы измерения напряжений в земной коре как на поверхности, так и в более глубоких горизонтах. Не все они равноценны, но их совместное применение дает возможность составить общее представление о величине и направленности современного поля напряжений.
Несмотря на то, что напряжениями в породах давно занимались горняки, в геологии, особенно в теоретической, этой проблемой начали интересоваться лишь в 50-е годы. Однако наибольшее внимание напряженное состояние коры и литосферы в целом привлекло внимание в середине 60-х годов с появлением теории тектоники литосферных плит. Измерение напряжений, существующих на различных по геодинамической природе границах плит, хорошо подтверждало теоретические модели. Например, все активные континентальные окраины, где океаническая земная кора погружается под континентальную, характеризуются сжимающими горизонтальными напряжениями, причем ориентировка оси сжатия, как правило, оказывается перпендикулярной простиранию активной окраины. Особенно хорошо это подтверждается сейсмологическими данными. Горизонтальное сжатие в пределах Курильской и Японской островных дуг оценивается в 200–400 МПа. Любопытно, что и внутренние участки литосферных плит, находящиеся вдали от активных окраин, также находятся в состоянии субгоризонтального сжатия, что свидетельствует об их жесткости.
Молодые горно-складчатые сооружения Альпийского пояса, простирающиеся от Бетских Кордильер на западе, через Апеннины, Альпы, Динариды, Карпаты, Понтиды, Кавказ, Загрос и другие горные цепи до Гималаев на востоке, по сейсмологическим и геологическим данным находятся в состоянии субгоризонтального сжатия, оси которого в большинстве случаев ориентированы перпендикулярно простиранию основных структурных элементов пояса. Это хорошо согласуется с представлением о формировании молодого горно-складчатого Альпийского пояса в результате сближения и последующего столкновения двух огромных континентальных литосферных плит: Евразийской и Африкано-Аравийской. Определение механизмов смещения горных пород в очагах землетрясений, анализ расположения тектонических разрывных нарушений и трещин подтверждаются данными по измерению напряженного состояния в скважинах, горных выработках и рудниках. Напряжения под Альпами и Гималаями достигают 100–130 и даже 200 МПа.
Не только горно-складчатые пояса, но и континентальные платформы подвергаются сжатию. Так, на Северо-Американской платформе в приповерхностных слоях и на глубинах в 1–3 км установлены сжимающие субгоризонтальные напряжения, значительно превышающие напряжения, связанные с литостатической нагрузкой. Такие же избыточные сжимающие напряжения выявлены на Африканской, Восточно-Европейской, Индостанской платформах. Северо-Американская платформа, наиболее изученная в части определения напряженного состояния геологическими и геофизическими методами, характеризуется в целом субгоризонтальным сжатием в направлении ЮЗ-СВ, причем жесткость этой монолитной плиты такова, что напряжения способны передаваться от одной части плиты к другой, несмотря на то что расположены они далеко друг от друга. Вблизи поверхности напряжения в два раза превышают литостатическое, а на глубинах в сотни метров и первые километры – на 50–100 МПа и более.
Примечательно, что не только континентальные плиты почти повсеместно подвергаются субгоризонтальному сжатию, но такое же сжатие выявлено и в океанских плитах в Тихом, Атлантическом и Индийском океанах. Таким образом, большая часть земной коры охвачена субгоризонтальным сжатием. Обстановки растяжения хотя и распространены довольно широко, но сосредоточены преимущественно в узких рифтовых зонах как в океанах, так и на континентах или в морских впадинах с корой океанического типа, например: в Японском, Филиппинском, Тирренском, Альборанском, Эгейском морях. В некоторых из них, судя по распределению магнитных аномалий, можно предполагать оси спрединга (растяжения), однако чаще всего он носит рассеянный характер.
Решение задачи о механизмах очагов землетрясений, приуроченных к рифтовым зонам океанов и континентов, демонстрирует растягивающие субгоризонтальные напряжения, действующие, однако, в очень узкой полосе шириной иногда всего лишь в несколько километров, например: в центральном грабене Исландии или в Красном море. В других местах ширина земной коры, охваченной растяжением, составляет десятки, редко первые сотни километров. В пределах Восточно-Африканских рифтов, в Байкальском рифте, рифте Рио-Гранде основное растяжение ориентировано перпендикулярно краям узких и длинных рифтов.
В Центральной и Восточной Азии наблюдается весьма сложная картина распределения полей сжимающих и растягивающих напряжений, выявленная китайским геологом Х.С. Лю и связанная с взаимодействием разных по размерам плит земной коры, что вызывает образование сдвиговых нарушений, при которых края плит скользят друг относительно друга. По расчетам П.Н. Кропоткина, участки земной коры, охваченные растяжением, не превышают 2% общей площади, а вся остальная ее часть находится в состоянии сжатия.
Выявленная усилиями исследователей разных стран в последние десятилетия глобальная картина напряженного состояния земной коры дала очень много для понимания тонуса литосферы, как образно заметили С.И. Шерман и Ю.И. Днепровский (1989 год). Этот тонус оказывает непосредственное влияние на геологические процессы, происходящие в настоящее время, и прежде всего на сейсмологические, что позволяет ставить вопрос о долгосрочных прогнозах землетрясений.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--