Реферат: Наследственность, представления о генетическом коде, гены индивидуальности

У бактерий, к-рые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепле­ния (рис. 2). При переносе генетич. ма­териала из клетки-донора в клетку-ре­ципиент, например при конъюгации , коль­цевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин). Искусственно прерывая про­цесс конъюгации, можно по возникшим типам рекомбинантов установить, ка­кие гены успели перейти в клетку-реци­пиент. В этом состоит один из методов построения Генетических карт хромосом бактерий, детально разработанных у ряда видов. Ещё более детализированы Генетические карты хромосом нек-рых бакте­риофагов

Генетика пола . Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории наследственности были получены при изучении наследования, сцепленного с полом . Ранее цитологи открыли в хромосомных наборах ряда видов жиивотных особые , так называемые половые хромосомы , которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы(XX), а самцы-разные(XY), в других - самцы-2 одинаковые(XX, или ZZ), а самки - разные(XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным , с разными - гетерогаметным . Женский пол гомогаметен , а мужской гетерогаметен у некоторых насекомых ( в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков у дрозофилы наследуется в

строгом соответствии с передачей потомству X-хромосом. Самка дрозофилы, проявляюща

рецесивный признак , например белую окраску глаз, в силу гомозиготности по этому гену, находящимуся в X-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою X-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передает его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою X( =Z ) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения X-хромосом концами; тогда самки передают сцепленные X-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим ). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии - от отца к сыну (такое наследование называется голандрическим ). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений наследственности, то есть изменчивости.

Нехромосомная теория наследственности . Первенствующая роль ядра и хромосом в наследственности не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению.Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери ). Таким образом , различают ядерную наследственность , связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью ), и внеядерную наследственность , зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении , но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями .

Молекулярная генетика . Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному развитию молекулярной генетики . Впервые Н. К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения “наследственных молекул”.В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислотиы ( ДНК ) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация ,заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов ин­формация о составе, строении и харак­тере обмена составляющих организм ве­ществ (прежде всего белков и нуклеино­вых кислот) и связанных с ними функ­циях. У многоклеточных форм при по­ловом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток — гамет , единственная функция к-рых — передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи . Генетическая информация заключена преимущественно в хромосо­мах, где она зашифрована в определён­ной линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (генетический код). Генетический код - это система зашиф­ровки наследственной информации в молекулах нуклеиновых кислот, реали­зующаяся у животных, растений, бакте­рий и вирусов в виде последовательности нуклеотидов . В природных нуклеино­вых кислотах — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)—встре­чаются 5 распространённых типов нуклео­тидов (по 4 в каждой нуклеиновой к-те), разлчающихся по входящему в их со­став азотистому основанию . В ДНК встречаются основания:

аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присут­ствует урацил (У). Кроме них, в составе нуклеиновых к-т обнаружено ок. 20 ред­ко встречающихся (т. н. неканонических, или минорных) оснований, а также не­обычных Сахаров. Так как количество кодирую­щих знаков Генетического кода (4) и число разновид­ностей аминокислот в белке (20) не сов­падают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокис­лоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточ­но для зашифровки всех аминокислот. Американский учёный Г. Гамов предложил (1954) модель т р и п л е т н о г о генетического кода, т. е. такого, в котором 1 аминокислоту коди­рует группа из трёх нуклеотидов, называемых кодоном. Число возможных триплетов равно 43 = 64, а это более чем втрое пре­вышает число распространённых амино­кислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует несколько кодонов (так называемая вы­рожденность кода). Было предложено много различных моделей генетического кода, из которых серьёзного внимания заслуживали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудни­ками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены след. осн. за­кономерности, касающиеся генетического кода: 1) между последовательностью нуклеотидов и кодируемой последовательностью ами­нокислот существует линейное соответ­ствие (коллинеарность генетического кода); 2) считыва­ние кода начинается с определённой точки; 3) считывание идёт в одном на­правлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) генетический код, как правило, яв­ляется вырожденным, т. е. 1 аминокис­лоту кодируют 2 и более триплетов-си­нонимов (вырожденность генетического кода умень­шает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём;

8) код в живой природе универсален (за нек-рыми исключениями). Универсаль­ность генетического кода подтверждается эксперимен­тами по синтезу белка in vitго. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из другого организма, далеко отстоящего от первого в эволю­ционном отношении (например, пророст­ков гороха), то в такой системе будет идти белковый синтез. Благодаря ра­ботам амер. генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах..

Из 64 кодонов у бактерий и фагов 3 кодона — УАА, УАГ и УГА — не коди­руют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы , т. е. сигнализируют о завер­шении синтеза полипептида. Их наз. тер­минирующими кодонами. Существуют также 3 сигнала о начале синтеза — это т. н. инициирующие колоны — АУГ, ГУГ и УУГ,— к-рые, будучи включён­ными в начале соответствующей инфор­мационной РНК (и-РНК), определяют включение формилметионина в первое положение синтезируемой полипептид­ной цепи. Приведённые данные справед­ливы для бактериальных систем; для высших организмов многое ещё не ясно. Так, кодон УГА у высших организмов мо­жет быть значащим; не совсем понятен также механизм инициации полипептида.

Реализация генетического кода в клетке происходит в два этапа. Первый из них протекает в ядре; он носит назв. транскрипции и за­ключается в синтезе молекул и-РНК на со­ответствующих участках ДНК. При этом последовательность нуклеотидов ДНК « переписывается » в нуклеотидную после­довательность РНК. Второй этап — трансляция — протекает в цитоплазме, на рибосомах; при этом последователь­ность нуклеотидов и-РНК переводится в последовательность аминокислот в белке; этот этап протекает при участии транспортной РНК (т-РНК) и соответ­ствующих ферментов.

Генетическая информация реализуется в ходе онтогенеза — развития особи — ее передачей от гена к признаку. Все клетки организма возникают в результате деле­ний единственной ис

ходной клетки — зи­готы — и потому имеют один и тот же набор генов — потенциально одну и ту же генетическую информацию. Специфичность клеток разных тка­ней определяется тем, что в них активны разные гены, т. е. реализуется не вся информация, а только её часть, необходимая для функ­ционирования данной ткани.

По мере изучения наследственности на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица наследственности, а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген-входящий в состав хромосомы участок молекулы ДНК , способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер)было показано , что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся еще в 30-х гг. А. C. Серебровским и Н. П. Дубининым на основе данных генетического анализа.

В 1967-69 гг. был осуществлен синтез вирусной ДНК вне организма, а также химический синтез гена дрожжевой аланиновой транспортной РНК. Новой областью исследования стала наследственность соматических клеток в организме и в культурах тканей. Открыта возможность экспериментальной гибридизации соматических клеток разных видов. В связи с достижениями молекулярной биологии явления наследственности приобрели ключевое значение для понимания ряда биологических процессов, а также для множества вопросов практтики.

Наследственность и эволюция . Еще Дарвину было ясно значение наследственности для эволюции организмов. Установление дискретной природы наследственности устранило

одно из важных возражений против дарвинизма: при скрещивании особей , у которых появились наследственные изменения, последние должны якобы “ разбавляться “ и ослабевать в своем направлении. Однако, в соответствии с законами Менделя,они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определенных условиях. В популяциях яв-

ления наследственности предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях , генетико-автоматических процессах и др. На это впервые указал С. С. Четвериков (1926 г.) , эксперимента

К-во Просмотров: 222
Бесплатно скачать Реферат: Наследственность, представления о генетическом коде, гены индивидуальности