Реферат: Научная революция в физике начала ХХ века: возникновение релятивистской и квантовой физики

Создание СТО было качественно новым шагом в развитии физического познания. СТО отличается от классической механики тем, что наблюдатель со средствами наблюдения органически входит в физическое описание релятивистских явлений. Описание физических процессов в СТО существенно связано с выбором системы координат. Физическая теория описывает не физический процесс сам по себе, а результат взаимодействия физического процесса со средствами исследования. Обращая на это внимание, А. Эйнштейн в своей статье "К электродинамике движущихся тел" (1905 г.) пишет: "Суждения всякой теории касаются соотношений между твердыми телами (координатными системами), часами и электромагнитными процессами". В СТО, в которой сложилось осознание того, что нельзя дать описание физического процесса самого по себе, можно только дать его описание по отношению к определенной системе отсчета, впервые в истории физики непосредственно проявился диалектический характер процесса познания, активность субъекта познания, неотрывное взаимодействие субъекта и объекта познания.

2.Создание и развитие общей теории относительности (ОТО)

2.1.Принципы и понятия эйнштейновской теории гравитации

Классическая механика и СТО формулируют закономерности физических явлений только в инерциальных системах отсчета. Вместе с тем, ни классическая механика, ни СТО не дают средств для реального выделения таких инерциальных систем. Получалось так, что законы физики справедливы лишь для некоторого достаточно узкого класса систем координат (инерциальных). Вполне закономерно возникла проблема, как распространить законы физики и на неинерциальные системы. После создания СТО Эйнштейн начал задумываться над распространением принципа относительности на случай неинерциальных систем. Возникает вопрос: на каком пути можно осуществить эту идею?

Возможность реализации этой идеи Эйнштейн увидел на пути обобщения принципа относительности движения - распространение принципа относительности не только на скорость, но и на ускорение движущихся систем. Если отказаться от приписывания абсолютного характера не только скорости, но и ускорению, то в таком случае выделенность класса инерциальных систем потеряет свой смысл, и можно так формулировать физические законы, чтобы их формулировка имела смысл в отношении любой системы координат. Это и есть содержание общего принципа относительности . Это означает, что точно так же, как нельзя говорить о скорости тела вообще, безотносительно к какому-нибудь телу В, так, очевидно, и ускорение имеет конкретный смысл по отношению к некоторому фактору, вызывающему и определяющему его.

До Эйнштейна существовало две точки зрения на причины, порождающие инерциальные силы в ускоренных системах. Ньютон считал, что таким фактором является абсолютное пространство, а Э. Мах - действие общей массы Вселенной (см. 8.1.3.). Эйнштейн пошел по иному пути - по пути расширения принципа эквивалентности сил инерции и сил тяготения (инертной и гравитационной масс) на оптические явления.

Эквивалентность инертной и гравитационной масс в классической механике была известна. Еще Галилей установил, что все тела на Земле, если не учитывать сопротивление воздуха, падают с одним и тем же ускорением. Ньютон подтвердил этот вывод опытами с маятниками. В 1890 г. венгерский физик Этвеш проверил этот факт с большой степенью точности (до 1 0 n , где n = - 9 ). (Сейчас эта точность поднята до n = - 1 2 ).

Некоторыми физиками высказывается мнение, что гравитационная и инертная массы всегда равны и имеют одну и ту же природу. Но так как согласно теории относительности энергия обладает инерцией, то она должна обладать и тяжестью. Эйнштейн также обращается к этой проблематике и задумывается о том, не обладает ли энергия также тяжелой (гравитирующей) массой и уже в 1911 г. и приходит к новым результатам и идеям, которые затем легли в основу общей теории относительности.

В центре его размышлений оказался вопрос: можно ли оценивать движение равноускоренной системы S ' по отношению к инерциальной системе S как пребывание в относительном покое? Теоретический анализ подводит его к выводу, что две системы отсчета, одна из которой движется ускоренно, а другая хотя и покоится, но в ней действует однородное поле тяготения, в отношении механических явлений эквивалентны и неразличимы. Это утверждение Эйнштейн иллюстрирует примером, в котором наблюдатель, находящийся в закрытом лифте, не может определить, движется ли ускоренно лифт или внутри него действуют силы тяготения. Эквивалентность, существующую между ускорением и однородным полем тяготения, которая справедлива для механики, Эйнштейн считает возможным распространить на оптические и вообще любые физические явления. Этот расширенный принцип эквивалентности и был положен им в основу общей теории относительности. В последующие годы Эйнштейн, продолжая развивать эти идеи, создал новую теорию, которую назвал общей теорией относительности. Построение этой теории он закончил в 1916 г.

С точки зрения ОТО пространство не обладает постоянной (нулевой) кривизной. Кривизна его меняется от точки к точке. Кривизна пространства определяется полем тяготения. Можно сказать больше: поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального евклидова пространства. Величина поля тяготения в каждой точке определяется значением кривизны пространства в этой точке. Таким образом, движение материальной точки в поле тяготения можно рассматривать как свободное "инерциальное" движение, но происходящее уже не в евклидовом, а в пространстве с изменяющейся кривизной. В результате, движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства.

Для определения кривизны пространства необходимо и достаточно знать выражение для компонент т.н. фундаментального тензора, который в теории Эйнштейна аналогичен потенциалу в теории тяготения Ньютона. Задача, следовательно, заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонентов фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т. д. Эйнштейн решил эту задачу и нашел общее уравнение гравитационного поля, которое в классическом приближении переходило в закон тяготения Ньютона. Таким образом, проблема тяготения была решена им в общем виде.

ОТО кардинально отличается от предшествующих ей фундаментальных физических теорий. Она отказывается от целого ряда старых понятий, формулируя вместе с тем новые понятия. Так, ОТО отказывается от понятий "сила", "потенциальная энергия", "инерциальная система", "евклидов характер пространства- времени" и др. Зато вводятся новые понятия. Поскольку в гравитационных полях не существует твердых тел, и ход часов зависит от состояния этих полей, то ОТО вынуждена пользоваться нежесткими (деформирующимися) телами отсчета. Такая система отсчета (ее называют "моллюском отсчета") может двигаться произвольным образом и ее форма может изменяться, используемые часы могут быть со сколь угодно нерегулярным ходом. В то же время ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, сохраняет инвариантный смысл понятий точка (пространственно-временное совпадение) пространственно-временной континуум конечного числа измерений (устанавливая его риманов характер) и др.

2.2. Экспериментальная проверка ОТО

ОТО стала фундаментом для выявления новых общих свойств и закономерностей Вселенной. Первым ее успехом было объяснение открытой еще в 1859 г. (и непонятной с точки зрения классической теории) дополнительной скорости движения перигелия Меркурия (около 4 3 " в столетие) под влиянием гравитационного поля Солнца. В соответствии с ОТО, результатом действия поля тяготения является то, что движение материальной точки, так же как и распространение светового луча, уже не является равномерным и прямолинейным. Распространение выводов ОТО на оптические явления приводит к ряду необычных следствий: явлению красного смещения спектров звезд и отклонению светового луча под действием этого поля.

Таким образом, в ОТО был получен новый фундаментальный результат: скорость света уже не является постоянной величиной, она изменяется, когда свет проходит поле тяготения, увеличиваясь или уменьшаясь в зависимости от взаимного направления распространения света и направления сил тяготения. Отсюда, в частности, следует, что луч света, проходя мимо тела, обладающего сильным полем тяготения, должен искривляться, если его направление не совпадает с направлением силы тяготения. Этот эффект может быть обнаружен. При наблюдении солнечного затмения можно сравнить положение группы звезд, находящихся на небесной сфере вблизи Солнца во время его затмения (когда их можно наблюдать), с положением этой же группы звезд ночью. В первом случае световые лучи от этих звезд, проходя около поверхности Солнца, должны искривляться в его гравитационном поле, следовательно, наблюдаться смещенными относительно их обычного положения на небесной сфере.

Опыты по измерению отклонения лучей света, проходящих около Солнца, имели большое значение для широкого признания общей, а вместе с ней и специальной теории относительности. В 1919 г. одна английская экспедиция направилась в Бразилию, а другая - на один из островов, расположенных возле африканского материка, для проверки этого эффекта. Наблюдения обеих экспедиций подтвердили существование эффекта Эйнштейна. Предполагаемое смещение группы звезд, видимых около Солнца во время затмения, действительно имело место, хотя точность измерений была невелика. Проведенные в 1922 г. новые измерения также подтвердили существование эффекта, предсказанного теорией Эйнштейна.

Другой результат, полученный в теории Эйнштейна, - наличие красного смещения в спектрах небесных тел - был подтвержден Сент-Джоном в 1923 - 1926 гг. при наблюдении спектра Солнца. В 1925 г. Адамс подтвердил выводы теории, наблюдая спектр спутника Сириуса, обладающего чрезвычайно большим полем тяготения.

Таким образом, экспериментальных подтверждений общей теории относительности чрезвычайно мало: изменения орбиты Меркурия, красное смещение для света, искривление лучей света вблизи Солнца, обусловленное кривизной пространства. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями.

2 3. Современное состояние теории гравитации и ее роль в физике ХХ века

Общая теория относительности сыграла в физике ХХ века особую и своеобразную роль.

Во-первых, она представляет собой теорию тяготения, хотя, возможно, и не вполне законченную, не лишенную некоторых недостатков. Это проявляется в том, что математический аппарат теории настолько сложен, что почти все задачи, кроме самых простейших, оказываются неразрешимыми. Трудность отчасти состоит в том, что гравитация - это вид энергии и поэтому она сама является собственным источником энергии; гравитация как физическое поле сама обладает (как, например, и электромагнетизм) энергией и импульсом, а значит, и массой. Ввиду таких трудностей (возможно, они скорее технического характера, но может быть и принципиального) ученые до сих пор - спустя 80 лет после того, как была сформулирована общая теория относительности,- все еще пытаются разобраться в ее смысле.

Поэтому вполне закономерно и то, что в ХХ веке физики продолжали попытки создания альтернативных теорий тяготения. Их создано уже свыше 20. Некоторые из них, как и теория Эйнштейна, т. е. исходят из геометрического толкования гравитации, а другие исходят из понятия поля, заданного в плоском пространстве-времени. Почти все эти альтернативные теории не предсказывают новых экспериментов и потому их эвристическое значение практически равно нулю. Среди физиков давно уже признано, что общая теория относительности дает наилучшее известное описание пространства-времени и гравитации. Такое признание в значительной степени обусловлено поистине удивительными красотой и идейно-теоретическим изяществом этой теории.

Во-вторых, на основе ОТО были развиты два фундаментальных направления современной физики:

· · геометризированные единые теории поля;

· · релятивистская космология.

Успешная геометризация гравитации заставила многих физиков задуматься над вопросом о сущности физики в ее отношении с геометрией. В этом вопросе сложились две противоположные точки зрения:

1. Поля и частицы непосредственно не определяют характер пространственно-временного континуума. Он сам служит лишь ареной их проявления. Поля и частицы чужды геометрии мира. Поля и частицы надо добавить к геометрии, чтобы вообще можно было говорить о какой-либо физике.

2. В мире нет ничего, кроме пустого искривленного пространства. Материя, заряд, электромагнетизм и другие поля являются лишь проявлением искривленного пространства. Физика есть геометрия.

ОТО оказалась переходной теорией между первым и вторым подходами. В ОТО представлен смешанный тип описания реальности: гравитация в ней геометризирована, а частицы и поля, отличные от гравитации, добавляются к геометрии.

Успех в геометризации гравитации побудил многих ученых (в том числе и самого Эйнштейна) к попыткам объединения электромагнитного и гравитационного полей в рамках достаточно общего геометрического формализма на базе ОТО. С дальнейшим открытием разнообразных элементарных частиц и соответствующих им полей естественно встала проблема включения и их в рамки подобной единой теории. Так было положено начало длительному процессу поисков геометризированной единой теории поля, который по замыслу должен реализовать второй подход - сведение физики к геометрии, создание т.н. геометродинамики.

3. Возникновение и развитие квантовой физики

3.1. Гипотеза квантов

Истоки квантовой физики уходят своими корнями в изучение процессов излучения тел. Еще в 1809 г. Прево сделал вывод о том, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в Х1Х веке привело к тому, что вместе с исследованием спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излучением и поглощением тела существует простая связь. В спектрах поглощения отсутствуют или ослабляются те участки спектра которые испускаются данным телом. Этот закон получил свое объяснение только в квантовой теории.

Густав Кирхгоф (1824 - 1887) сформулировал новый закон, известный под именем закона Кирхгофа. Он показал, что для лучей одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способности для всех тел одно и то же. Или, другими словами, если Еl T и Аl T - соответственно испускательная и поглощательная способность тела, зависящие от длины волны l и температуры Т, то где j (l ,T) - некоторая универсальная функция l и Т, одинаковая для всех тел.

Кирхгоф ввел также понятие абсолютного черного тела как тела, поглощающего все падающие на него лучи, и дал известную его модель. Для такого тела, очевидно, Al T =1; тогда универсальная функция Кирхгофа j (l , Т) равна испускательной способности абсолютно черного тела. Сам Кирхгоф не определил вид функции j (l , Т), а отметил только некоторые ее свойства. Встала задача определить вид этой функции. Функция j (l , Т) - универсальная, поэтому естественно было предполагать, что ее вид можно определить, исходя из теоретических соображений - используя основные законы термодинамики. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры .Однако задача определения вида функции Кирхгофа оказалась весьма трудной.

К-во Просмотров: 208
Бесплатно скачать Реферат: Научная революция в физике начала ХХ века: возникновение релятивистской и квантовой физики