Реферат: Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками
При розв'язку двовимірної задачі щодо вертикальних коливань колеса під зусиллям у виді використано прийом накладення двох розв'язків: від статичної і динамічної дії, при цьому обмежений розв'язок від статичного зусилля отримано у виді. Обмежений розв'язок від динамічного зусилля отримано асимптотичним методом для випадку малих відносних частот коливань. Асимптотичні формули для визначення амплітудних значень нормальних контактних напружень набувають виду:
Використовуючи асимптотичні методи, за допомогою яких розв'язана плоска задача, розглянуто розв'язок і для просторової контактної задачі, що наведена до двовимірного інтегрального рівняння виду (8). Асимптотичні і чисельно-аналітичні методи теорії пружності і контактної механіки при дослідженні динамічних контактних задач щодо взаємодії колеса з рейкою дозволили визначити рівень контактних напружень і встановити характер їхнього розподілу по зоні контакту.
Отримані результати використані при багатомірному моделюванні руху візкового екіпажа локомотива в складі потяга для визначення сил зчеплення і теплового потоку, що виникає в контактній зоні тертя коліс із рейками в процесі їхньої взаємодії.
У третьому розділі одержали подальшого розвитку теоретичні дослідження динамічних характеристик екіпажів локомотивів на основі вдосконалення просторової математичної моделі руху локомотива в складі потяга. Моделювання проведено з метою визначення ступеня впливу на рівень динамічного діяння різних факторів конструктивного і експлуатаційного характеру, а також поліпшення характеристик і умов взаємодії рухомого складу й колії раціональним вибором параметрів та характеристик візкових екіпажів.
В основу побудови математичної моделі закладено загальноприйняті передумови (рис. 2). У моделі використано характеристики силових і пружних зв'язків, одержані дослідним шляхом на натурних пристроях.
Величина сили зчеплення визначається для кожного колеса залежно від швидкості руху і ковзання відповідних контактних поверхонь, нормального тиску та характеру його розподілу по зоні контакту при довільних профілях коліс і рейок з урахуванням їхнього взаємного розташування і фрикційного стану. Швидкість руху локомотива в поздовжньому напрямку визначається в процесі інтегрування диференціальних рівнянь руху, і на її величину ніяких обмежень не накладається.
У розрахунках ураховуються також електродинамічні процеси в тягових електродвигунах і поздовжні коливання вагонів у складі потяга.
Для складання диференціальних рівнянь руху використано рівняння Лагранжа другого роду у виді:
Збурююча дії від шляху задається незалежними функціями переміщення у вертикальній і горизонтальній площинах.
У моделі використано детерміновані збурювання у виді відомих синусоїдальних функцій з параметрами, що відповідають певному ступеню зношування або некруглостей коліс, а також випадкові збурювання – методом пропуску «білого шуму» через лінійний фільтр. Розв'язок рівнянь знаходиться в часовій зоні у виді відомого вектора стану. При моделюванні состава потяга залежно від кількості вагонів у математичну модель додається рівна кількість узагальнених координат.
За результатами інтегрування диференціальних рівнянь руху визначаються лінійні й кутові переміщення кузова, рам візків, колісних пар і тягових електродвигунів, сили зчеплення коліс із рейками, поперечні горизонтальні й вертикальні переміщення рейок, швидкості і прискорення тіл досліджуваної системи.
Моделювання силової взаємодії екіпажа тепловоза ТЕП 150 і рейкової колії виконано при розрахунковому навантаженні від колісної пари на рейки в 215 кН у швидкісному діапазоні від 40 до 200 км/год при русі в прямих і кривих ділянках колії з радіусом 300, 600 і 1000 м .
Результати розрахунків динамічних процесів за наведеною математичною моделлю тестувалися шляхом порівняння з результатами ходових динамічних випробувань тепловоза ТЕП 150, проведених відділом випробувань ВАТ «ХК «Луганськтепловоз». Результати порівняння показали задовільну збіжність за коефіцієнтами вертикальної і горизонтальної динаміки, рамними силами, вертикальними силами у буксовому підвішуванні, взаємним переміщенням елементів екіпажа і кузова, вертикальними і горизонтальними прискореннями візків і кузова. Розбіжність результатів за основними показниками не перевищує 15% (табл. 1).
Розрахунки й експериментальні дослідження показали, що екіпаж тепловоза ТЕП 150 за динамічними показниками відповідає нормативним вимогам: коефіцієнти вертикальної й горизонтальної динаміки не перевищують припустимих значень у швидкісному діапазоні до 160 км/год.
Моделюванням руху в прямих ділянках колії встановлено, що при взаємодії коліс зі зношеним профілем і новими рейками спостерігається незначний ріст вертикальних динамічних сил (≤ 5% ), однак збільшуються динамічні горизонтальні і рамні сили, горизонтальні поперечні прискорення і переміщення (на 15...30% ).
При русі локомотива, що має колеса із прокатом 5 мм , у кривих ділянках по нових рейках і колії в "гарному стані" збільшення показників горизонтальної динаміки не перевищує 10% , проте із погіршенням стану рейкової колії вплив зношування коліс на вказані показники значно зростає і сягає рівня 35% .
Таблиця 1
Зіставлення результатів розрахунку і експериментальних даних за основними динамічними показниками екіпажа тепловоза ТЕП 150
Моделюванням руху в кривих ділянках шляху радіусом 300, 600 і 1000м при різних швидкостях руху і стандартних профілях коліс і рейок встановлено, що бічні і рамні сили, поперечні прискорення к?