Реферат: Нефтеперерабатывающая и нефтехимическая промышленность
Поваренная соль применяется для регенерации в основном вследствие ее доступности, а так же вследствие того, что получающиеся при этом хорошо растворимые СаCl2 и MgCl 2 легко удаляются с регенерационным раствором и отмывочной водой. В процессе регенерации при фильтровании раствора Na Cl сверху вниз через истощенный катионит наиболее полный объем катиона натрия на содержащиеся в катионите катионы кальция и магния происходит в верхних слоях загрузки фильтра. При пропускании через фильтр раствора Na Cl в последнем возрастает концентрация вытесняемых из катионита катионов Ca 2+ и Mg 2+ и снижается концентрация катионов Na + .
Увеличение концентрации противоионов (Ca 2+ и Mg 2+ ) в регенерационном
растворе подавляет диссоциацию истощенного катионита и ослабляет процесс ионного обмена. Возникающий при этом противоионный эффект тормозит реакцию регенерации, в результате чего по мере движения регенерирующего раствора в нижние слои катионита регенерация последнего протекает менее полно и некоторое количество катионов Ca 2+ и Mg 2+ остается не вытесненным из нижних слоев катионита. Для устранения этого недостатка можно пропустить через катионит все новые свежие порции раствора реагента. Но это вызовет значительное увеличение удельного расхода поваренной соли и повышение стоимости обработки воды. Поэтому ограничиваются однократным пропуском регенерационного раствора с количеством соли, превышающим в 3,0-3,5 раза стехиометрический расход, что обеспечивает относительно удовлетворительную регенерацию катионита.
При пропускании через такой отрегенерированный фильтр сверху вниз умягчаемой жесткой воды, содержащей катионы Ca 2+ и Mg 2+ , она сначала проходит в соприкосновение с наиболее хорошо отрегенерированными слоями катионита, молекулы которого содержат в своей атмосфере почти исключительно катионы натрия. Поэтому в верхних слоях катионита катионный обмен протекает достаточно полно и умягчаемая вода содержит минимальное остаточное количество катионов Ca 2+ и Mg 2+ . Однако по мере продвижения в нижние слоя натрий-катионита умягчаемая вода в результате обменных реакций обогащается катионами натрия. В этих условиях в результате противоионного эффекта процесс умягчения воды тормозится, и некоторое количество катионов кальция и магния остается в умягченной воде, которая в следствии этого имеет некоторую остаточную жесткость. Этот противоионный эффект, мало ощутимый для мягких вод, становится заметным препятствием для глубокого умягчения сильно минерализованных вод, у которых вследствие замены катионов кальция и магния катионитами натрия создаются высокие концентрации этого противоиона, снижающие эффект умягчения воды.
Следовательно, как полнота регенерации катионита снижается по направлению движения регенерационного раствора, так снижается и глубина умягченной воды, фильтруемой в том же направлении. Если же регенерационный раствор и умягченную воду пропустить в разных направлениях, последняя перед выходом из фильтра соприкасается с наиболее хорошо отрегенерированными слоями катионита, благодаря чему обеспечивается более глубокое умягчение воды. Такой метод противоточного реагентов на регенерацию катионита, приближаясь к стехиометрическим соотношениям обменивающихся катионитов, не снижая при этом глубины умягчения воды.
1.4 Описание процесса
1.4.1Получение осветленной воды
Речная вода с ОАО ОНПЗ «Сибнефть-Омский» поступает на отделение Е-7 по водоводу Æ 600 мм. Учет ведется по прибору типа «Данфос». Давление поступающей воды 4-4,5 кгс/см2 , температура 7 о С зимой, 20 о С летом.Подача воды осуществляется в смеситель поз. 121,2 . Уровень в смесителе поддерживается автоматически регулятором уровня поз. 5021,2 . Клапан регулятора уровня установлен на трубопроводе подачи речной воды в смеситель. Заградительные сетки, установленные в верхней части смесителя, улавливают посторонние предметы в виде щепы и мусора.
В смесителе осуществляется полное смешение воды с коагулянтом и флокулянтом перед подачей в осветлители. В качестве коагулянта используется алюмохлорид (отход производства цехов гр. «И») или оксихлорид алюминия закупаемый у иногородних производителей.
В качестве флокулянта используется «Праестол-650», который применяется в процессе коагуляции для интенсификации осаждения твердых частиц. Коагулянты применяются для ускорения процессов осаждения примесей воды т.е. происходит процесс укрупнения мельчайших коллоидных частиц, коагуляция завершается образованием видимых хлопьев и отделением их от жидкой фазы.
После полного смешения с коагулянтом и флокулянтом вода поступает в осветлители поз. 131-12 . Коллектор воды расположен над осветлителями, откуда вода поступает в их нижнюю часть в перфорированные трубы. Через отверстия перфорированных труб вода заполняет осветлитель. Скорость восходящего потока воды 2,2 м/сек. На высоте 2-4 метров в рабочей камере образуется слой взвешенного осадка (видимых хлопьев). Вода, проходя через него, очищается от частиц взвеси, увеличивая при этом объем осадка, избыток которого отводится через осадко-приемные окна в шламо уплотнительные камеры.
Вода прошедшая через слой взвешенного осадка, осветленная и очищенная от взвеси поступает в лоток через сборные желоба затем в резервуар, а далее насосами поз. 11-4, потребителям.
По мере накопления шлама в осветлителях производят отвод шлама в систему канализации. Прием воды в осветлитель прекращают, закрыв запорную арматуру на входе.
Продувка шламо уплотнительных камер ведется одновременно.
Контроль продувки ведется визуально, до чистой воды.
Предусмотрена подача речной воды, минуя осветлители в резервуар, на период вынужденного ремонта смесителей или других ситуаций.
В зависимости от качества речной воды от её температуры (зима, лето) определяется доза и количество подаваемого для коагуляции реагента (алюмохлорида, оксихлорида алюминия, полиоксихлорида алюминия марка Аква-Аурат ТМ-30). Качество осветленной воды анализируется в соответствие с планом аналитического контроля. Отбор проб осветленной воды производится
из напорного коллектора на входе в отделение Е-3.
Порядок подготовки раствора флокулянта
Флокулянты применяются для интенсификации процесса коагуляции. В цехе в качестве флокулянта применяется «Праестол 650».
Рекомендуемая концентрация рабочего раствора 0,1-0,05 %. Рекомендуемая доза составляет 0,4-0,6 мг/л. Готовится раствор в баке поз. 8 куда набирается вода, подогревается вода паром или паровым конденсатом. Медленно рассыпается 1,5 кг. флокулянта в бак при постоянном перемешивании техническим воздухом.
Рабочий раствор подается в смеситель насосом поз. 25,7
Порядок подготовки раствора коагулянта
В качестве коагулянта применяется гидроксохлористый алюминий (ГХА) (отход производства цехов гр. «И») и оксихлорид алюминия (ОХА). Различие коагулянтов в том, что в условиях низких температур ГХА не работает. В качестве коагулянта также применяют Аква-Аурат ТМ-30.
Доставляются коагулянты в таре по 1 м3 с концентрацией 210-250 г/дм3 . Коагулянт из емкости сливается в бак, где готовится раствор с концентрацией, установленной распоряжением по цеху с учетом лабораторных заключений.
Разбавление проводится осветленной водой, с постоянным перемешиванием техническим воздухом и контролем концентрации.
Приготовленный раствор коагулянта насосом поз. 26,8 подается в смеситель, где происходит полное смешение коагулянта и флокулянта с водой перед подачей в осветлители поз. 131-12 .
1.4.2Получение умягченной воды
Исходной водой при подготовке умягченной воды служит осветленная вода, которая готовится в отделении Е-7 и подается насосом № 1, 2, 3, 4 в отделение Е-3-3а.
Давление осветленной воды на вводе в отделение контролируется по техническому манометру. Расход осветленной воды в отделение Е-3-3а измеряется преобразователем разности давлений и регистрируется РСУ (распределенная система управления) поз.510. Давление поступающей осветленной воды измеряется датчиком давления и регулируется РСУ поз.611, регулирующий клапан установлен на вводе в отделение. Предусмотрена сигнализация давления по минимальному и максимальному значению.
После регулирующего клапана поз.611 осветленная вода разделяется на два потока: часть воды подается на фильтры ионного обмена № 10/1-6 , контроль над давлением поступающей воды осуществляется по техническому манометру; вторая часть подается на узел смешения для получения частично-умягченной воды.
Расход осветленной воды на узел смешения измеряется преобразователем разности давлений и регулируется РСУ поз.514 с коррекцией по уровню в резервуаре № 13. Регулирующий клапан установлен на трубопроводе подачи осветленной воды на узел смешения.
Осветленная вода по трубопроводу d=300 мм подается на фильтры ионного обмена № 10/1-6 сверху вниз, проходит через слой загруженного катионита КУ-2-8. При движении воды происходит реакция обмена ионов Са2+ и Мg2+ нерастворимых солей жесткости на ионы Na+ катионита КУ-2-8. В результате процесса образуются растворимые соли натрия.