Реферат: Нейрокомпьютеры
Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь). С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи.
С коннекционизмом тесно связан следующий блок идей:
однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);
надежные системы из ненадежных элементов и “аналоговый ренессанс” использование простых аналоговых элементов;
“голографические” системы при разрушении случайно выбранной части система сохраняет свои свойства.
Предполагается, что широкие возможности систем связей компенсируют бедность выбора элементов, их ненадежность и возможные разрушения части связей.
Для описания алгоритмов и устройств в нейроинформатике выработана специальная “схемотехника”, в которой элементарные устройства (сумматоры, синапсы, нейроны и т.п.) объединяются в сети, предназначенные для решения задач. Для многих начинающих кажется неожиданным, что ни в аппаратной реализации нейронных сетей, ни в профессиональном программном обеспечении эти элементы вовсе не обязательно реализуются как отдельные части или блоки. Используемая в нейроинформатике идеальная схемотехника представляет собой особый язык описания нейронных сетей и их обучения. При программной и аппаратной реализации выполненные на этом языке описания переводятся на более подходящие языки другого уровня.
Биологический нейрон
рис.1. Биологический нейрон
Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию (рис. 1). Она состоит из тела клетки (cell body), или сомы (soma), и двух типов внешних древоподобных ветвей: аксона (axon) и дендритов (dendrites). Тело клетки включает ядро (nucleus), которое содержит информацию о наследственных свойствах, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль аксона (передатчик), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся синапсы (synapses).
Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются определенные химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Результативность синапса может настраиваться проходящими через него сигналами, так что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека.
Кора головного мозга человека является протяженной, образованной нейронами поверхностью толщиной от 2 до 3 мм с площадью около 2200 см2, что вдвое превышает площадь поверхности стандартной клавиатуры. Кора головного мозга содержит около 1011 нейронов, что приблизительно равно числу звезд Млечного пути. Каждый нейрон связан с 103 - 104 другими нейронами. В целом мозг человека содержит приблизительно от 1014 до 1015 взаимосвязей.
Нейроны взаимодействуют посредством короткой серии импульсов, как правило, продолжительностью несколько мсек. Сообщение передается посредством частотно-импульсной модуляции. Частота может изменяться от нескольких единиц до сотен герц, что в миллион раз медленнее, чем самые быстродействующие переключательные электронные схемы. Тем не менее сложные решения по восприятию информации, как, например, распознавание лица, человек принимает за несколько сотен мс. Эти решения контролируются сетью нейронов, которые имеют скорость выполнения операций всего несколько мс. Это означает, что вычисления требуют не более 100 последовательных стадий. Другими словами, для таких сложных задач мозг "запускает" параллельные программы, содержащие около 100 шагов. Это известно как правило ста шагов. Рассуждая аналогичным образом, можно обнаружить, что количество информации, посылаемое от одного нейрона другому, должно быть очень маленьким (несколько бит). Отсюда следует, что основная информация не передается непосредственно, а захватывается и распределяется в связях между нейронами.
Искусственный нейрон
рис.2. Искусственный нейрон
История создания искусственных нейронов уходит своими корнями в 1943 год, когда шотландец МакКаллок и англичанин Питтс создали теорию формальных нейросетей, а через пятнадцать лет Розенблатт изобрел искусственный нейрон (персептрон), который, впоследствии, и лег в основу нейрокомпьютера.
Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис.2 представлена модель реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, x3...xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, w2, w3...wn, и поступает на суммирующий блок, обозначенный СУМ (адаптивный сумматор). Каждый вес соответствует "силе" одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором W ) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом.
NET=XW
Активационные функции
Сигнал NET далее, как правило преобразуется активационной функцией F и дает выходной нейронный сигнал OUT . Активационная функция может быть обычной линейной функцией:
OUT=K(NET)
где К - постоянная, пороговой функцией
OUT=1, если NET>T
OUT=0 в остальных случаях,
где Т – некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.
Если функция F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется «сжимающей» функцией. В качестве «сжимающей» функции часто используется логистическая или «сигмоидальная» (S-образная) функция, показанная на рис.3.. Эта функция математически выражается как
F(x)=1/(1+e-x) .
Таким образом,
OUT=1/(1+e-NET)
рис.3. Сигмоидальная логистическая функция
По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как в области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.
Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими. Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона
Базовые архитектуры нейронных сетей
рис.4. Базовые архитектуры нейронных сетей
Каждый нейрон получает сигналы от соседних нейронов по специальным нервным волокнам. Эти сигналы могут быть возбуждающими или тормозящими. Их сумма составляет электрический потенциал внутри тела нейрона. Когда потенциал превышает некоторый порог, нейрон переходит в возбужденное состояние и посылает сигнал по выходному нервному волокну. Отдельные искусственные нейроны соединяются друг с другом различными методами. Это позволяет создавать разнообразные нейронные сети с различной архитектурой, правилами обучения и возможностями.
ИНС (Искусственные Нейронные Сеть) может рассматриваться как направленный граф со взвешенными связями, в котором искусственные нейроны являются узлами. По архитектуре связей ИНС могут быть сгруппированы в два класса: сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями. В наиболее распространенном семействе сетей первого класса, называемых многослойным перцептроном, нейроны расположены слоями и имеют однонаправленные связи между слоями. На рисунке представлены типовые сети каждого класса. Сети прямого распространения являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети. Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводит к изменению состояния сети.
Полносвязные нейронные сети.
Рис. 4. Полносвязные нейронные сети
Здесь каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети. Все входные сигналы подаются всем нейронам. Элементы слоистых и полносвязных сетей могут выбираться по-разному. Существует, впрочем, стандартный выбор: нейрон с адаптивным неоднородным линейным сумматором на входе. Для полносвязной сети входной сумматор нейрона фактически распадается на два: первый вычисляет линейную функцию от входных сигналов сети, второй линейную функцию от выходных сигналов других нейронов, полученных на предыдущем шаге. Функция активации нейронов (характеристическая функция) это нелинейный преобразователь выходного сигнала сумматора. Если функция одна для всех нейронов сети, то сеть называют однородной (гомогенной). Если же характеристическая функция зависит еще от одного или нескольких параметров, значения которых меняются от нейрона к нейрону, то сеть называют неоднородной (гетерогенной).