Реферат: Нейтрон-нейтронный метод и его применение
Σ (Е) = Σi σi (Е) Ni , (4)
где σi (E) - полное макроскопическое сечение для ядер i-copта; Ni - количество i-ядер в 1 см3, причем суммирование ведется по всем химическим элементам и их изотопам.
Необходимо отметить, что нейтронные сечения, в особенности сечение поглощения, для разных элементов периодической таблицы варьируют в широких пределах. Поэтому некоторые элементы, даже при ничтожном содержании их в породе, могут вносить в Σ значительный вклад. К элементам с аномально большими сечениями поглощения относятся ртуть, бор, кадмий и многие редкие земли.
Выше уже говорилось, что при облучении горной породы потоком быстрых нейтронов потери энергии при рассеянии приводят к замедлению нейтронов. Для большинства горных пород длина замедления в основном зависит от содержания водорода.
2. Схема нейтронных методов
Взаимное расположение в скважинном приборе источника нейтронов и детекторов, используемых в нейтронных методах каротажа, показано на рис.1. Измерения в нейтронных методах обычно производят в геометрии 4π, и нейтронное облако вокруг скважины и вызываемые им гамма-поля обладают осевой симметрией. Пунктирные траектории нейтронов, иллюстрирующие процессы взаимодействия и ядерные реакции, идущие на быстрых и медленных нейтронах, показаны на рисунке условно.
Рис.1. Схема взаимодействия нейтронов с веществом и ядерных реакций, используемых в нейтронных методах каротажа.
При осуществлении какого-либо конкретного метода в скважинном приборе обычно применяются не разнотипные детекторы γ-квантов (2а, 2г) или нейтронов (26, 2в), а один или несколько однотипных детекторов, рассчитанных на регистрацию только одного вида излучения.
В большинстве нейтронных методов каротажа используются радиоизотопные полониево-бериллиевые источники, испускающие быстрые нейтроны с энергией ~4 МэВ. Между детекторами 2 и источником 10 располагается экран 11 из парафина и свинца, защищающий детектор от воздействия прямого нейтронного и γ-излучения источника.
В зависимости от регистрируемого детектором излучения нейтронные методы каротажа можно подразделить на собственно нейтронные методы, в которых измеряется плотность потока нейтронов в горных породах, и нейтрон-гамма-методы, основанные на регистрации вторичного γ-излучения. К изучаемой нами группе принадлежит нейтрон-нейтронный каротаж по тепловым (ННК-Т) и надтепловым (ННК-НТ), в том числе и резонансным (ННК-Р), нейтронам.
3. Определение влажности грунтов и почв
Типичными приложениями ННК являются определения влажности горных пород и содержания в них элементов с аномально большими сечениями поглощения нейтронов. Определение влажности W, которая непосредственно связана с пористостью, позволяет с помощью ННК дифференцировать осадочные горные породы по диалогическим признакам, оценивать прочностные качества пород и, что особенно важно, изучать свойства пластов как коллекторов нефти и газа.
Изменение показаний ННК с увеличением влажности связано с различным геометрическим расположением облака замедлившихся и рассеянных нейтронов относительно детектора. При малой влажности в связи с небольшим содержанием в горной породе водорода, служащего наиболее эффективным рассеивателем нейтронов, средняя длина пробега их в среде велика, и нейтронное облако формируется на значительном удалении от детектора, которого достигает лишь небольшое число нейтронов. С увеличением водородосодержания благодаря уменьшению длины пробега λ, нейтронное облако постепенно приближается к детектору, чем и вызвано появление максимума на кривой IННК (w). При большой влажности облако нейтронов снова удаляется от детектора, теперь уже приближаясь к источнику, и показания ННК уменьшаются.
Инверсия зависимости данных ННК от влажности характерна как для надтепловых, так и для тепловых нейтронов, поскольку плотности их в среде взаимосвязаны. На плотность тепловых нейтронов сильнее влияют вещественный состав пород и минерализация пластовых вод. Однако чувствительность ННК-Т выше, чем ННК-НТ. Поэтому определения влажности и пористости пластов с пресной водой ведут по ННК-Т, а пластов с минерализованной водой - по ННК-НТ.
Для перехода от ННК-Т к ННК-НТ достаточно окружить детектор нейтронов кадмиевым экраном, который полностью поглощает тепловые нейтроны. Надтепловые же нейтроны замедляются в этом экране до тепловых и регистрируются детектором.
Для измерения влажности используют ампульные источники нейтронов нескольких типов: Ро - Be, Pu - Be. В качестве детекторов в нейтронных влагомерах чаще всего используют пропорциональные борные счетчики, реже - сцинтилляционные счетчики медленных нейтронов.
Качество нейтронного влагомера определяется следующими показателями, связанными с эталонировочным графиком: высокой скоростью счета, низким фоном в точке m = 0, линейным характером графика в широком диапазоне влажности.
Промышленные образцы нейтронных влагомеров обычно работают по ННМ-Т. Отказ от использования надтепловых нейтронов объясняют потерей в скорости счета из-за низкой эффективности детекторов.
Влияние вещественного состава и плотности. Рассмотрим применение нейтрон-нейтронного каротажа для определения элементов с большим сечением поглощения нейтронов. В данном случае для уменьшения влияния водородосодержания выгодно применять инверсионные зонды.
В почвогрунтах могут присутствовать следующие элементы с высокими сечениями захвата - бор, хлор, марганец, железо, калий. Увеличение концентрации поглощающих элементов приводит к снижению скорости счета тепловых нейтронов и к погрешности в определении m.
Характерным примером элементов с большим σп служит бор, поглощающий нейтроны по реакции (n, а). Одной из проблем, которую приходится решать при разведке месторождений боратов, является определение больших содержаний бора. Сечение поглощения нейтронов бором, а следовательно, и чувствительность нейтронной борометрии настолько велики, что ННК-Т практически не позволяет различать содержания бора выше 1,5 %. Поэтому большие содержания В определяются с помощью ННК-НТ. Сечение реакции σ (n, α) убывает с увеличением энергии нейтронов как 1/v , и градуировочный график ННК-НТ линеен в существенно большем диапазоне содержаний В, чем график ННК-Т.
Плотность грунта. Нейтронное поле зависит от плотности среды так же, как γ-поле. В частности, скорость счета, измеренная доинверсионным зондом, растет с увеличением плотности. При изучении влажности грунтов в условиях неполного влагонасыщения результаты измерений будут зависеть от плотности скелета грунта.
Если погрешность измерения влажности принять равной ∆m = 0,005, то допустимые колебания плотности скелета грунта составят ∆ρc = 0,02-0,05 г/см3 . При значительных колебаниях плотности грунта в измерения влажности следует вносить поправку. Целесообразно сочетать измерения влажности ННМ с измерениями плотности ГГМ-П.
Глубинность исследований. Под глубинностью исследований ННМ обычно понимают радиус r0,9 цилиндрического слоя, из которого поступает к детектору 90% нейтронов. Установлены следующие закономерности.
Глубинность связана с длиной замедления нейтронов. Для зондов небольшой длины (R = 0-25 см)
r0,9 = 2,1 L, (5)
где L - длина замедления. С увеличением длины зонда глубинность меняется незначительно. Анализ пространственного распределения надтепловых нейтронов показывает, что максимальное число нейтронов находится в сферическом слое, удаленном от источника на расстояние около 2 ρL.
Поскольку и длина замедления, и длина диффузии существенно уменьшаются с ростом влажности, глубинность ННМ определяется главным образом влажностью среды. Кроме того, глубинность, выраженная в линейных единицах, уменьшается пропорционально росту плотности среды.
Влияние промежуточной зоны. Обычно измерения влажности грунтов выполняют в обсаженных скважинах малого диаметра. В этом случае на результаты измерений будут влиять диаметр обсадной трубы, характер заполнения скважины (вода, воздух), толщина и материал обсадной трубы, каверны в затрубном пространстве и их заполнение. При поверхностных измерениях влияют неровности исследуемого участка.
Для ННМ решающее значение имеет различие не столько плотностей, сколько нейтронных параметров промежуточной зоны и основной среды. Увеличение водородсодержания или концентрации поглощающих нейтроны элементов в промежуточной зоне резко изменяет скорость счета и характер эталонировочного графика. При увеличении диаметра заполненной воздухом скважины чувствительность нейтронного влагомера уменьшается. Заполнение скважины водой значительно увеличивает эффект. Обсадные дюралюминиевые трубы практически не влияют на скорость счета.