Реферат: Нейтронные звёзды (пульсары)
судьбе нейтронных звезд. Постоянно наблюдая за поведением пульсара, можно точно установить: сколько энергии он теряет, насколько замедляется, и даже то, когда он прекратит свое существование, замедлившись настолько, что не сможет излучать мощные радиоволны. Эти исследования подтвердили многие теоретические предсказания относительно нейтронных звезд.
Уже к 1968 году были обнаружены пульсары с периодом вращения от 0,033 секунды до 2 секунд. Периодичность импульсов радио пульсара выдерживается с удивительной
точностью, и поначалу стабильность этих сигналов была выше земных атомных часов. И все же по мере прогресса в области измерения времени для многих пульсаров удалось
зарегистрировать регулярные изменения их периодов. Конечно, это исключительно малые изменения, и только за миллионы лет можно ожидать увеличения периода вдвое.
Отношение текущей скорости вращения к замедлению вращения — один из способов оценки возраста пульсара.
Несмотря на поразительную стабильность радиосигнала, некоторые пульсары иногда испытывают так называемые «нарушения». За очень короткий интервал времени (менее 2 минут) скорость вращения пульсара увеличивается на существенную величину, а затем через некоторое время возвращается к той величине, которая была до «нарушения». Полагают, что «нарушения» могут быть вызваны перегруппировкой массы в пределах нейтронной звезды. Но в любом случае точный механизм пока неизвестен. Так, пульсар «Вела» примерно раз в три года подвергается большим «нарушениям», и это делает его очень интересным объектом для изучения подобных явлений.
МАГНЕТАРЫ
Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения - SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды. Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один - вне ее. Эти невероятные взрывы энергии могут быть вызваны «звездо - трясениями» - мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из
их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма - и рентгеновское излучение.
Нейтронные звезды были идентифицированы как источники мощных гамма - всплесков после огромной гамма вспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных
звёзд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны «звездо – трясениями». В 1998 году внезапно очнулся
от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма
и рентгеновских вспышек была предложена модель магнетара - нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь
очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей,
новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более
сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20),
конвекция и действие динамо прекращаются, но этого времени вполне достаточно, что- бы успело возникнуть нужное поле.
Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и
резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов
в объеме нейтронной звезды, но и ее твердой коры.
Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — АХР. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и АХР являются фазами жизни одного и того же класса объектов, а
именно магнетаров, или нейтронных звезд, которые гамма - кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются детищами теоретиков, и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства.
БЕСПОКОЙНОЕ СОСЕДСТВО
Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других галактиках), свидетельствующих о том, что не всем нейтронным звездам
предназначено вести жизнь в одиночестве. Такие объекты рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости оттого, насколько массивная звезда составит ей компанию, эта «кража» будет вызывать разные последствия.
Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца, на такую «крошку», как нейтронная звезда, не сможет сразу упасть из - за своего слишком большого углового момента. Поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать рентгеновское излучение.
Другое интересное явление, связанное с строчными звездами, имеющими мало-
пассивного компаньона, — рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде светимость, почти в 100 тысяч раз превышающую светимость Солнца. Эти вспышки объясняют тем, что, когда водород и гелий переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение минуты.
Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. Звезда-гигант теряет вещество в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество течь по силовым линиям к магнитным полюсам. Это означает, что рентгеновское излучение, прежде всего, генерируется в горячих точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной — это тоже пульсар, но только рентгеновский.
Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах же компаньонами нейтронных звезд являются слабые по блеску
звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст «слабых» звезд - карликов может насчитывать миллиарды лет, поскольку первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры — это старые системы, в которых магнитное поле успело со временем ослабеть, а пульсары — относительно молодые, и потому магнитные поля в них сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем.