Реферат: Некоторые парадоксы теории относительности
Пусть в системе отсчета в начальный момент
в точке, совпадающей с началом координат произошла вспышка света. В последующий момент времени
фронт световой волны, в силу закона постоянства скорости света, распространился до сферы радиуса
с центром в начале координат системы
. Однако в соответствии с постулатами Эйнштейна, это же явление мы можем рассмотреть и точки зрения системы отсчета
, движущейся равномерно и прямолинейно вдоль оси
, так, что ее начало координат и направления всех осей совпадали в момент времени
с началом координат и направлениями осей первоначальной системы
. В этой движущейся системе, соответственно постулатам Эйнштейна, за время
свет также распространится до сферы радиуса
радиуса , однако, в отличие о предыдущей сферы должен лежать в начале координат системы
, а не
. Несовпадение этих сфер, т.е. одного и того же физического явления, представляется чем-то совершенно парадоксальным и неприемлемым с точки зрения существующих представлений. Кажется, что для разрешения парадокса надо отказаться от принципа относительности, либо от принципа постоянства скорости света. Теория относительности предлагает, однако, совершенно иное разрешение парадокса, состоящее в том, что события, одновременные в одной системе отсчета
, неодновременны в другой, движущейся системе
, и наоборот. Тогда одновременные события, состоящие в достижении световым фронтом сферы, определяемой уравнением
, не являются одновременными с точки зрения системы
, где одновременны другие события, состоящие в достижении тем же световым фронтом точек сферы, определяемой уравнением
Таким образом, одновременность пространственно разобщенных событий перестает быть чем-то абсолютным, как это принято считать в повседневном макроскопическом опыте, а становится зависящей от выбора системы отсчета и расстояния между точками, в которых происходит события. Эта относительность одновременности пространственно разобщенных событий свидетельствует о том, что пространство и время тесно связаны друг с другом, т.к. при переходе о одной системе отсчета к другой, физически эквивалентной, промежутки времени между событиями становятся зависящими от расстояний (нулевой промежуток становится конечным и наоборот).
Итак, постулаты Эйнштейна помогли нам прийти к новому фундаментальному положению в физической теории пространства и времени, положению о тесной взаимосвязи пространства и времени и об их нераздельности, в этом и состоит главное значение постулатов Эйнштейна.
Основное содержание теории относительности играет постулат о постоянстве скорости света. Основным аргументов в пользу этого является та роль, которую отводил Эйнштейн световым сигналам, с помощью которых устанавливается одновременность пространственно разобщенных событий. Световой сигнал, распространяющийся всегда только со скоростью света, приравнивается, таким образом, к некоторому инструменту, устанавливающему связь между временными отношениями в различных системах отсчета, без которого якобы понятия одновременности разобщенных событий и времени теряют смысл. Необходимость такого истолкования содержания теории относительности легко доказывается, если обратиться к одному из возможных выводов преобразований Лоренца, опирающемуся на постулат относительности и вместо постулата о постоянстве скорости света использующему лишь допущение о зависимости массы тела от скорости.
Вывод преобразований Лоренца без постулата о постоянстве скорости света.
Для вывода преобразований Лоренца будем опираться лишь на “естественные” допущения о свойствах пространства и времени, содержавшиеся еще в классической физике, опиравшейся на общие представления, связанные с классической механикой:
1. Изотропность пространства, т.е. все пространственные направления равноправны.
2. Однородность пространства и времени, т.е. независимость свойств пространства и времени от выбора начальных точек отсчета (начала координат и начала отсчета времени).
3. Принцип относительности, т.е. полная равноправность всех инерциальных систем отсчета.
Различные системы отсчета по-разному изображают одно и то же пространство и время как всеобщие формы существования материи. Каждое из этих изображений обладает одинаковыми свойствами. Следовательно, формулы преобразования, выражающие связь между координатами и временем в одной - “неподвижной” системе с координатами и временем в другой - “движущейся” системе
, не могут быть произвольными. Установим те ограничения, которые накладывают “естественные” требования на вид функций преобразования:
1. Вследствие однородности пространства и времени преобразования должны быть линейными.
Действительно, если бы производные функций по
не были бы константами, а зависели от
то и разности
, выражающие проекции расстояний между точками 1 и 2 в “движущейся” системе, зависели бы не только от соответствующих проекций
, в “неподвижной” системе, но и от значений самих координат
что противоречило бы требованию независимости свойств пространства от выбора начальных точек отсчета. Если положить, что проекции расстояний вида x‘ =
=
зависят только от проекций расстояний в неподвижной системе, т.е. от x =
, но не зависит от
, то
при
т.е.
или
.
Аналогично можно доказать, что производные по всем другим координатам
также равны константам, а следовательно, и вообще все производные
по
суть константы.
2. Выберем "движущуюся" систему таким образом, чтобы в начальный момент
точка, изображающая ее начало координат, т.е.
совпадала с точкой, изображающей начало координат "неподвижной" системы, т.е.
, а скорость движения системы
была бы направлена только по
Если мы также учтем требование изотропности пространства, то линейные преобразования для системы отсчета
, выбранной указанным образом, запишутся в виде
Здесь отсутствуют члены, содержащие
и
в выражениях
и
, в силу изотропности пространства и наличия единственного выделенного направления вдоль оси
, соответственно постановке задачи. На этом же основании в выражениях для
и
отсутствуют члены, пропорциональные, соответственно,
и
, а коэффициенты
при
и
одинаковы. Члены, содержащие
и
, отсутствуют в выражениях для
и
в силу того, что ось
все время совпадает с осью
. Последнее было бы невозможно, если бы
и
зависели от
и
.
3. Изотропность предполагает также симметричность пространства. В силу же симметрии ничто не должно измениться в формулах преобразования, если изменить знаки и
, т.е. одновременно изменить направление оси
и направление движения системы
. Следовательно,
(d) Сравнивая эти уравнения с предыдущими (
) получаем:
. Вместо
удобно ввести другую функцию
, так, чтобы
выражалось через
и
посредством соотношения
Согласно этому соотношению,
- симметричная функция. Используя это соотношение, преобразования (d) можно записать в виде
(e), причем все входящие в эти формулы коэффициенты
суть симметрии функции
.
4. В силу принципа относительности обе системы, "движущаяся" и "неподвижная", абсолютно эквивалентны, и поэтому обратные преобразования от системы к
должны быть тождественно прямым от
к
. Обратные преобразования должны отличаться лишь знаком скорости
, т.к. система
движется относительно системы
вправо со скоростью
, а система
движется относительно системы
(если последнюю считать неподвижной), влево со скоростью
. Следовательно, обратные преобразования должны иметь вид
. (f) Сравнивая эти преобразования с (e), получаем
. Но в силу симметрии получаем, что
, т.е.
. Очевидно, имеет смысл лишь знак (+), т.к. знак (-) давал бы при
перевернутую по
и
систему. Следовательно
. Замечая, что коэффициенты
- тоже симметричные функции
, первое и последнее уравнение из (e) и (f) можно записать в виде: А)
, а)
, В)
, в)
. Умножая А) на
, В) на
и складывая, получим
. Сравнивая это выражение с а), получаем
. Откуда имеем
Следовательно, извлекая квадратный корень и замечая, что знак (-) так же, как и для , не имеет смысла, получаем
. Итак преобразования приобретают вид:
(g) или ,подробнее:
,(h) где
- неизвестная пока функция
.
5. Для определения вида обратимся вновь к принципу относительности. Очевидно, что преобразования (g) должны быть универсальными и применимыми при любых переходах от одних систем к другим. Таким образом, если мы дважды перейдем от системы
к
и от
к
, то полученные формулы, связывающие координаты и время в системе
с координатами и временем в
, должны также иметь вид преобразований (g). Это вытекающее из принципа относительности требование, в совокупности с предыдущими требованиями обратимости, симметрии и т.д. означает, что преобразования должны составлять группу.
Воспользуемся этим требованием групповости преобразований. Пусть - скорость системы
относительно
и
- скорость системы
относительно системы
Тогда согласно (g)
Выражая и
через
и
, получаем
Согласно сформулированному выше требованию эти же преобразования должны записываться в виде (g), т.е. (k) Коэффициенты, стоящие при
в первой из этих формул и при
во второй, одинаковы. Следовательно, в силу тождественности предыдущих формул и этих, должны быть одинаковы и коэффициенты, стоящие при
в первой из предыдущих формул и при
во второй из формул (h) т.е.
. Последнее равенство может быть удовлетворено только при
6. Итак, в преобразованиях (h) h является константой, имеющей размерность квадрата скорости. Величина и даже знак этой константы не могут быть определены без привлечения каких-либо новых допущений, опирающихся на опытные факты.