Реферат: Нелинейные регрессии

Рег. № _________________

"___"_______________2008г.

МОСКОВСКИЙ НОВЫЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ

Факультет: Финансово-экономический

Реферат

По дисциплине: " Эконометрика "

_____________________________________________________________

На тему: _____" Нелинейные регрессии "

Студента

Кулешовой Юлии Вячеславовны

Группа_____М07ФЗВС-2/04 сп____

Курc _____второй______

Форма обучения__ _заочная______

Преподаватель_______________

Дата сдачи___________________

Результат проверки_____________

Работа защищена с оценкой

2008/2009 уч. год

Содержание

Введение. 3

1. Линейная регрессия. 5

2. Полиномиальная регрессия. 6

3. Нелинейная регрессия. 8

4. Сглаживание данных. 12

5. Предсказание зависимостей. 14

Литература. 15

Введение

Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.

Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(хk) со случайной погрешностью k, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, …, an), которой зависимость Y(x) отображалась бы с минимальной погрешностью. Отсюда следует условие приближения:

yk = f(xk, a0, a1, …, an) + k.

Функцию f(xk, a0, a1, …, an) называют регрессией величины y на величину х. Регрессионный анализ предусматривает задание вида функции f(xk, a0, a1, …, an) и определение численных значений ее параметров a0, a1, …, an, обеспечивающих наименьшую погрешность приближения к множеству значений yk. Как правило, при регрессионном анализе погрешность приближения вычисляется методом наименьших квадратов (МНК). Для этого выполняется минимизация функции квадратов остаточных ошибок:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 677
Бесплатно скачать Реферат: Нелинейные регрессии