Реферат: Норберт Винер и кибернетика
План
1. Первые шаги кибернетики. Кибернетика Н. Винера
1.1 Н. Винер – "крестный отец" кибернетики
1.2 Кибернетика сегодня
1.3 Техническая кибернетика
2. Взаимодействие управляемой и управляющей систем
Литература
1. Первые шаги кибернетики. Кибернетика Н. Винера
1.1 Н. Винер – "крестный отец" кибернетики
Почти сто пятьдесят лет назад французский физик и математик Андре Мари Ампер закончил обширный труд — "Очерки по философии наук". В нем знаменитый ученый попытался привести в стройную систему все человеческие знания. Каждой из известных в то время наук было отведено свое место в системе. В рубрику за номером 83 Ампер поместил предполагаемую им науку, которая должна изучать способы управления обществом.
Ученый заимствовал ее название из греческого языка, в котором слово "кибернетес" означает "рулевой", "кормчий". А кибернетикой в Древней Греции называли искусство кораблевождения.
Между прочим, Ампер в своей классификации наук поместил кибернетику в разделе "Политика", которая как наука первого порядка делилась на науки второго и третьего порядков. Ко второму порядку Ампер отнес "политику в собственном смысле", а кибернетику, науку об управлении, он определил в науку третьего порядка.
Каждой науке соответствовал девиз в стихотворной форме на латинском языке. Кибернетику Ампер сопроводил такими словами, звучащими весьма символично: "...et secura cives ut pace fruantur" ("...и обеспечивает гражданам возможность наслаждаться миром").
Долгое время после Ампера термином "кибернетика" ученые широко не пользовались. По существу, он был забыт. Но вот в 1948 году известный американский математик Норберт Винер опубликовал книгу под названием "Кибернетика, или Управление и связь в живых организмах и машинах". Она вызвала большой интерес ученых, хотя законы, которые Винер положил в основу кибернетики, были открыты и исследованы задолго до появления книги.
Краеугольные камни кибернетики — теория информации, теория алгоритмов и теория автоматов, изучающая способы построения систем для переработки информации. Математический аппарат кибернетики весьма широк: здесь и теория вероятностей, и теория функций, и математическая логика, и многие другие разделы современной математики.
В развитии кибернетики большую роль сыграли и биологические науки, изучающие процессы управления в живой природе. Но конечно, решающим в становлении новой науки был бурный рост электронной автоматики и особенно появление быстродействующих вычислительных машин. Они открыли невиданные возможности в обработке информации и в моделировании систем управления.
Как в музыке стремятся положить на ноты все человеческие чувства и настроения, так и в кибернетике стремятся положить на числа все ситуации, происходящие в природе, в нашем сознании.
На протяжении столетий трудами математиков, физиков, медиков и инженеров — ученых разных стран — закладывался фундамент и формировались принципиальные основы кибернетики. Выдающееся значение для ее развития имели труды американских ученых К. Шеннона, Дж. Неймана, идеи нашего всемирно известного физиолога И. П. Павлова. Историки отмечают заслуги и таких выдающихся инженеров и математиков, как И. А. Вышнеградский, А. М. Ляпунов, А. Н. Колмогоров. И правильнее было бы говорить, что в 1948 году состоялось не рождение, а крещение кибернетики — науки об управлении. Именно к этому времени с наибольшей остротой встал вопрос о повышении качества управления в нашем усложненном мире. И кибернетика дала специалистам самого разного профиля возможность применять точный научный анализ для решения проблем управления.
Услугами кибернетики стали пользоваться математики и физики, биологи, физиологи и психиатры, экономисты и философы, инженеры различных специальностей. У них к этой науке, так сказать, двоякий интерес. С одной стороны — развивать и совершенствовать процессы управления в различных сферах деятельности человека, повышать производительность его труда. С другой — стремиться постоянно, глубоко и всесторонне изучать объекты управления, находить все новые и новые закономерности, которым подчиняются процессы управления, раскрывать принципы организации и структуры управляющих систем. И неизбежно объектом самого пристального изучения, самого детального исследования становится живой организм: сам человек как управляющая система высшего типа, те или иные функции которой инженеры и ученые стремятся воспроизвести в автоматах.
1.2 Кибернетика сегодня
КИБЕРНЕТИКА (греч. — искусство управления) - наука об управлении, получении, передаче и преобразовании информации в кибернетических системах.
Непосредственной предшественницей кибернетики была теория автоматического управления, рассматривающая относительно простые объекты и управляющие системы, описываемые системами дифференциальных и разностных уравнений. С появлением электронных цифровых вычислительных машин в 1945 — 46 годах появилась возможность ставить и успешно решать задачу автоматизации не только физических процессов, но и умственной деятельности человека.
Центр тяжести исследований сместился от простых систем управления к сложным, использующим, как правило, электронные вычислительные машины в качестве основного управляющего звена и превращающимся постепенно в системы искусственного интеллекта. Были разработаны системы распознавания образов, распознавания речевых сигналов и др. Одна из основных функций искусственного интеллекта – имитация способности человека к обучению. Среди других его задач – моделирование способности к логическому выводу, постановке новых задач и целей и т. п. В результате технического воплощения многих свойств человеческого интеллекта строятся различные преобразователи информации и роботы.
Основной задачей теоретической кибернетики является разработка аппарата и методов исследований, пригодных для изучения систем управления, независимо от их природы. Теоретическая кибернетика включила в себя ряд научных направлений, развивавшихся ранее в таких разделах математики, как математическая логика, теория вероятностей, вычислительная математика, теория информации, теория кодирования, теория алгоритмов, теория случайных процессов, теория игр, теория статистических решений, а также разделы, возникшие в самой кибернетике, в первую очередь теория автоматов, теория формальных языков и грамматик, теория распознавания образов, теория обучающихся и самоорганизующихся систем и др.
Важной отличительной особенностью теоретической кибернетики является то, что она ввела принципиально новый метод изучения объектов и явлений — так называемый математический эксперимент, или машинное моделирование, позволяющее производить исследование объекта по его математической модели без построения и исследования реальной физической модели этого объекта. Математический эксперимент можно применять к объектам, не имеющим точного математического описания в традиционной форме. Наличие метода математического эксперимента ставит теоретическую кибернетику наряду с математикой в особое положение по отношению к другим наукам. А именно, имея свой специфический предмет исследования (системы управления), она вместе с тем поставляет и новый метод исследования (математический эксперимент), охватывающий значительно большую, чем классические дедуктивные математические методы, область возможных применений, включая практически все науки — естественные, технические и гуманитарные. Появление ЦВМ и метода машинного моделирования привело к тому, что теория сложных систем управлений стала одним из основных разделов кибернетики. Методы комплексного исследования сложных систем составляют основу системного анализа и исследования операций. Помимо теоретического ядра, в кибернетике возникли (и впоследствии оформились как самостоятельные) прикладные направления. Важнейшим из них является разработка теоретических основ вычислительной техники, в частности разработка теории ЭВМ и математического обеспечения ЭВМ, создание теории автоматизации проектирования ЭВМ, разработка методов (и создание на их основе технических средств) применения ЭВМ для автоматизации сбора и обработки данных, автоматизации дедуктивных построений и др. Проблемы автоматизации технологических процессов, управления сложными тех. комплексами оформились в самостоятельное направление, получившее название технической кибернетики. Однако задачи управления технологией всё больше соприкасаются с задачами управления предприятиями в организационно-экономическом плане (планирование, управление запасами, финансирование, управление кадрами и т.п.). Эти задачи призвано решать другое прикладное направление кибернетики – кибернетика экономическая, основной ветвью которой является разработка автоматизированных систем управления предприятием. В последнее время наметилась тенденция к органическому слиянию автоматизированных систем технологического и административного управления. Такие системы получили название интегрированных. Широкое практическое применение средств и методов кибернетики привело к принципиальному изменению свойств информационной среды обитания человека и, как следствие, к необходимости рассматривать производственные, экономические и социальные структуры общества с учётом повсеместной электронизации процессов коммуникации, обработки информации и принятия решений. Эти задачи призвана решать новая наука – информатика. Проблемы применении методов и технических средств кибернетики для изучения биологических систем, в частности организма человека и его мозга, вызвали необходимость создания кибернетики биологической, а автоматизация медицинской диагностики, создание искусственных органов и управление ими, управление лечебным процессом и т.п. являются задачами кибернетики медицинской.
1.3 Техническая кибернетика
ТЕХНИЧЕСКАЯ КИБЕРНЕТИКА — направление (раздел) кибернетики, в котором на основе единых для кибернетики в целом научных идей и методом изучаются технические системы управления. Техническая кибернетика – современный этап развития теории и практики автоматического регулирования и управления, а также научная база для решения задач комплексной автоматизации производства, транспортных и др. сложных систем управления. Сложные системы управления, в которых как непременный элемент принимает участие человек-оператор, называются автоматизированными системами, в отличие от систем автоматических, функционирующих без непосредственного участия в них человека. Проблема "человек — машина", в которой рассматриваются возможности рационального распределения функций между человеком и автоматически действующими устройствами,— одна из главных в технической кибернетике. Участие человека в управлении агрегатами и технологическими процессами, с одной стороны, и в административном управлении, с другой, также приводит к сращиванию этих двух сфер управленческой деятельности и к созданию единой человеко-машинной системы управления. Поэтому, кроме физиологических особенностей человека-оператора, существенное значение приобретает и его психологическое состояние. Главной задачей инженерной психологии является разработка методов использования знаний о поведении человека при проектировании и эксплуатации сложных человеко-машинных систем управления.
Большое значение в технической кибернетике приобретают методы решения задач, позволяющие преодолеть трудности, возникающие из-за наличия значительного числа взаимодействующих элементов (подсистем), входящих в соответствующую сложную систему.
Одним из самостоятельных направлений технической кибернетики является распознавание образов. Распознающие системы имеют большое научное и практическое значение, их применяют не только при создании читающих автоматов, но и при распознавании и анализе ситуаций, характеризующих состояние технологических процессов или физических экспериментов, а также при разработке медицинских автоматизированных диагностических устройств и т. д. Одним из самостоятельных направлений технической кибернетики является направление, связанное с разработкой систем автоматизированного проектирования (САПР) разного рода объектов и систем.
2. Взаимодействие управляемой и управляющей систем
Управление — функция системы, ориентированная либо на сохранение ее основного качества (т. е. совокупности свойств, утеря которых влечет разрушение системы) в условиях изменения среды, либо на выполнение некоторой программы, долженствующей обеспечить устойчивость функционирования, гомеостаз, достижение определенной цели. Понятие управления формализовано настолько, чтобы можно было дать его точное и при этом достаточно широкое определение; более того, всякое описательное определение управления неизбежно оперирует понятиями, общепринятые формализации которых не выработаны (система, среда, цель, программа и др.). Приведенное определение предусматривает два случая; первый из них имеет место в самоорганизующихся системах — биологических, социальных и социально-экономических; второй случай характерен для отдельных подсистем самоорганизующихся систем, а также для разнообразных технических устройств. При этом цель, в зависимости от трактовки соответствующего понятия, можно соотносить отдельным частным случаям управления либо считать неотъемлемым атрибутом управления вообще.
Систему, в которой реализуются функции управления, обычно называют системой управления и выделяют в ней две подсистемы: управляющую и управляемую. Управляющая система осуществляет функции управления, управляемая система является его объектом. Если управление осуществляется сознательно, то управляющая система создается субъектом управления, который формирует также цель (цели) управления. Иногда понятия субъект и цель управления трактуются шире: субъект управления отождествляется с управляющей системой (независимо от ее природы), а в качестве цели принимается выполнение программы управления. Разделение системы управления на управляющую и управляемую подсистемы не всегда можно произвести однозначно. В технических системах возникающие при этом трудности не имеют принципиального характера, а касаются лишь удобства описания (например, при телеуправлении размещаемые на объекте управления устройства приема и передачи информации можно относить как к нему самому, так и к управляющей системе).
Между управляющей и управляемой системами необходимы каналы связи. По каналу связи, ведущему к управляющей системе от управляемой, передается информация о состоянии последней, точнее, о текущих значениях существенных переменных объекта управления; по каналу связи противоположного направления передается управляющая информация (управляющие воздействия). Таким образом, управляющая и управляемая системы соединены контуром обратной связи. В некоторых случаях канал связи для передачи информации о состоянии объекта управления отсутствует (имеется лишь прямая связь); такие схемы управления весьма ограничены по возможностям и отличаются низкой надежностью. Простейшая схема управления с обратной связью изображена на рис. 1, где R — управляющая система, О — управляемая система (объект управления), Е — среда системы управления, d — канал передачи информации о состоянии объекта управления, f — канал передачи управляющей информации, i — воздействия среды на объект управления, а — выход объекта управления. Эта схема, в частности, адекватно описывает многочисленные механизмы регулирования и технических и биологических системах по принципу гомеостаза.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--