Реферат: Нормы и интерпретация результатов теста

Вернемся к изучаемому ряду. Он состоит из 18 членов. Его ран­говая медиана равна: Me = (18 + 1)/2 = 9,5.

Она расположится между 9-й и 10-й величиной ряда. 9-я величи­на — 52, 10-я — 68. Медиана занимает срединное место между ними, следовательно, Me = (52 + 68)/2 = 60.

По обе стороны от этой величины находится по 50% величин ряда.

Характеристику распределения численностей в непараметриче­ском ряду можно получить из отношения его квартилей. Квартилью называется величина, отграничивающая 1/4 всех величин ряда. Квартиль первая — ее обозначение Q 1 вычисляется по формуле:

Это полусумма первого и последнего рангов первой — левой от медианы половины ряда;

квартиль третья, обозначаемая Q 3 вычисляется по формуле:

т.е. как полусумма первого и последнего рангов второй, правой от ме­дианы, половины ряда. Берутся порядковые значения рангов по их по­следовательности в ряду. В обрабатываемом ряду Q 1 = (1+9)/2 = 5, Q 3 = (10 + 18)/2 = 14.

Рангу 5 в этом ряду соответствует величина 39, а рангу 14 — 70. Следовательно, в данном ряду Q 1 = 39, а Q 3 = 70.

Для характеристики распределения в непараметрическом ряду вычисляется среднее квартильное отклонение, обозначаемое Q . Формула для Q такова: Q = (Q 3 - Q 1 )/2. Для обрабатываемого ряда Q = (70 - 39)/2 = 15,5. Были рассмотрены статистическая обработка параметрического ряда (x и s), статистическая обработка непараметрического ряда ( M е и Q ). Параметрический ряд относится к шкале интервалов, не­параметрический — к шкале порядка. Но встречают?

К-во Просмотров: 377
Бесплатно скачать Реферат: Нормы и интерпретация результатов теста