Реферат: Нуклеиновые кислоты. Обмен веществ и энергии в клетке

Сложные системы реакций, составляющие процесс пластического и энергетического обмена, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю же среду, выделяются продукты, которые клеткой более не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называется обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Любое проявление жизнедеятельности, любая функция клетки требуют затраты энергии. Энергия нужна для движения, для биосинтетических реакций и различных других форм клеточной активности.

Каким же образом энергия реакций расщепления используется клеткой для различных ее функций?

Любая деятельность клетки всегда точно совпадает во времени с распадом АТФ.

При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышца работает почти исключительно за счет содержащейся в ней АТФ. При усиленной секреции в секреторных клетках также идет интенсивное расщепление АТФ. При синтезе сложных веществ, например при синтезе сложных углеводов или белка, одновременно с синтетической реакцией идет распад АТФ. Отсюда следует, что непосредственным источником энергии и для сокращения мышц, и для секреции, и для синтеза сложных соединений в клетке является энергия, освобождающаяся при расщеплении АТФ. Так как запас АТФ в клетке ограничен, то ясно, что после распада АТФ' должно произойти ее восстановление. Так оно в действительности и происходит. В этом и заключается биологический смысл остальных реакций энергетического обмена. Функция этих реакций одна: их энергия используется для восполнения убыли АТФ. Понятно поэтому, что при длительной работе содержание АТФ в клетке существенно не изменяется. Это объясняется тем, что реакции расщепления углеводов и других веществ обеспечивают быстрое и полное восстановление израсходованной АТФ. Таким образом, АТФ — единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время. Синтез АТФ в основном происходит в митохондриях клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те места клетки, где возникает потребность в энергии.

Три этапа энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на 3 последовательных этапа. Рассмотрим эти этапы на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на небольшие молекулы: из крахмала образуется глюкоза, из жиров — глицерин и жирные кислоты, из белков — аминокислоты, из нуклеиновых кислот — нуклеотиды. Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергия рассеивается в виде тепла.

Второй этап энергетического обмена называется без кислородным или неполным. Вещества, образовавшиеся в подготовительном этапе, — глюкоза, глицерин, органические кислоты, аминокислоты и др. — вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты, обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее на третий и т. Д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере без кислородного расщепления глюкозы, которое имеет специальное название — гликолиза. Гликолиз представляет собой совокупность более десятка последовательных ферментативных реакций. В нем принимают участие 13 ферментов и образуются 12 промежуточных веществ. Не останавливаясь на отдельных реакциях гликолиза, укажем, что на первую ступень ферментного конвейера вступает глюкоза, а с последней сходят две молекулы молочной кислоты. Суммарное уравнение гликолиза должно быть записано так:

C6 H12 O6 = 2C3 H6 O3

Глюкоза Молочная кислота

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока) вызывается молочнокислыми грибками и бактериями. По механизму оно вполне тождественно гликолизу. Спиртовое брожение тоже сходно с гликолизом. Большая часть реакций гликолиза и брожение совпадают полностью. Различие состоит лишь в заключительной стадии: при гликолизе процесс заканчивается образованием молочной кислоты, а при брожении добавляется еще одно звено. Из молочной кислоты под влиянием фермента, содержащегося в дрожжах, выделяется СО2 и образуется этиловый спирт:

C3 H6 O3 = CO2 + C2 H5 OH

Таким образом, суммарное уравнение спиртового брожения должно быть записано так:

C6 H12 O6 = 2CO2 + 2C2 H5 OH

Глюкоза Этиловый спирт

Как видно из уравнений гликолиза и брожения, в этих процессах кислород не участвует, почему они и называются без кислородными процессами. Вполне ясно также, почему эти процессы называются неполными: полным расщеплением глюкозы будет разрушение ее до конца, т. е. превращение ее в простейшие соединения (СО2 и Н2 О), что соответствует уравнению:

C6 H12 O6 + 6O2 = 6CO2 + 6H2 O

Почти все промежуточные реакции при без кислородном расщеплении глюкозы идут с освобождением энергии. Каждая отдельная реакция дает небольшой выход энергии, а в сумме получается немалая величина: расщепление одной грамм-молекулы глюкозы (180 г) на две грамм-молекулы молочной кислоты дает почти 200 кдж (50 000 кал). Если бы энергия, освобождающаяся при превращении глюкозы в молочную кислоту, освободилась сразу, в результате одной реакции, то это привело бы к опасному перегреву и повреждению клетки. Разделение же процесса на ряд промежуточных звеньев обусловливает постепенное выделение энергии, что предохраняет клетку от теплового повреждения.

Процесс гликолиза идет только в присутствии АТФ и АДФ, так как оба эти нуклеотида являются обязательными участниками происходящих реакций. АТФ необходима в начале гликолиза, АДФ — в конце. АТФ фосфорилирует глюкозу: передавая глюкозе остаток фосфорной кислоты, АТФ при этом переходит в АДФ. АДФ обеспечивает обратный процесс: дефосфорилирование промежуточных продуктов гликолиза. Присоединяя остаток фосфорной кислоты, АДФ превращается в АТФ. В конце гликолиза АТФ всегда образуется больше, чем ее тратится в начале. В ходе расщепления одной молекулы глюкозы происходит образование двух новых молекул АТФ. Таким образом, в итоге процесса гликолиза АТФ всегда накапливается.

Так как синтез АТФ представляет эндотермический процесс, то очевидно, что энергия для синтеза АТФ черпается за счет энергии реакций без кислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе без кислородного расщепления грамм-молекулы глюкозы освобождается 200 кдж (50 000 кал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ в АТФ затрачивается 40 кдж (10 000 кал). Входе без кислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2x40 = 80кдж (2X10 000 = 20 000 кал). Итак, из 200 кДж (50 000 кал) только 80 (20 000) сберегаются в виде АТФ, а 120 (30 000) рассеиваются в виде тепла. Следовательно, в ходе без кислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена — стадия кислородного, или полного, расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2 О.

Основное условие осуществления этого процесса — наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия без кислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления: СО2 и Н2 О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции без кислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, однако, много больше, чем на каждой ступени без кислородного процесса. В сумме кислородное расщепление дает громадную величину — 2600 кдж (650 000 г-кал) (на две грамм-молекулы молочной кислоты). Если бы при расщеплении содержащейся в клетке молочной кислоты вся энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении же процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование стадии кислородного расщепления показало, что в ней, как и в без кислородном процессе, происходит образование АТФ из АДФ. В ходе кислородного расщепления двух молекул молочной кислоты синтезируются 36 молекул АТФ, т. е. 36 богатых энергией фосфатных связей.

Теперь должно быть ясным значение третьей стадии энергетического обмена — кислородного расщепления молочной кислоты. Если в ходе без кислородного расщепления освобождается 200 кдж (50 000 кал) (на моль глюкозы), то в стадии кислородного расщепления освобождается еще 2600 кдж (650 000 кал) Если в ходе без кислородного процесса синтезируются две молекулы АТФ, то в процессе кислородного расщепления синтезируется еще 36 молекул АТФ. Иными словами, на стадии кислородного расщепления образуется свыше 90% энергии, получаемой клеткой в процессе расщепления глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2 О, т. е. в ходе процессов без кислородного и кислородного расщепления, синтезируется 2 + 36=38 молекул; АТФ. Таким образом, в потенциальную энергию АТФ переходит 38X40=1520 кдж (38x10 000 = 380 000 кал). Всего же при расщеплении глюкозы (в без кислородную и кислородную стадии), освобождается 200 + 2600 = 2800 кдж (50 000 + 650 000=700 000 кал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12—15%. В лучших турбинах этот процент повышается до 20—25. В двигателях внутреннего сгорания/ он достигает примерно 35%. Таким образом, по эффективности: преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

К-во Просмотров: 149
Бесплатно скачать Реферат: Нуклеиновые кислоты. Обмен веществ и энергии в клетке