Реферат: Нуклезоиды, нуклеотиды и нуклеиновые кислоты

Некоторые свойства нуклеиновых кислот

Поверхностные свойства . Макромолекулы нуклеиновых кислот состоят из полярных групп, и поэтому их поверхность достаточно гидрофильна. Вследствие этого в водных растворах нуклеиновые кислоты при их малой концентрации, низкой молекулярной массе и при достаточно большой концентрации свободных молекул воды самопроизвольно образуют истинные растворы, а в случае большой молекулярной массы — лио-

фильные коллоидные растворы.

Наличие на поверхности макромолекул нуклеиновых кислот отрицательного заряда, возникающего за счет диссоциации фосфатных групп, способствует образованию ассоциативных комплексов — нуклеопротеинов, состоящих из нуклеиновых кислот

и основных белков (рI > 8,0).

Структурно-информационные свойства . Нуклеиновые кислоты - информационные биополимеры, осуществляющие хранение и передачу генетической информации во всех живых организмах, а также участвующие в биосинтезе белков. ДНК является носителем генетической информации, которая записана через определенную последовательность расположения в цепи четырех гетероциклических оснований. Первый этап реализации генетической информации заключается в том, что на конкретных участках одной из нитей молекулы ДНК происходит синтез молекул РНК. Биосинтез РНК, называемый транскрипцией , обычно происходит в результате комплементарного копирования ДНК-матрицы с помощью фермента РНК-полимеразы. Синтезированная РНК содержит точную копию конкретного участка ДНК.

В результате транскрипции образуются четыре различных вида РНК :

рибосомальная рРНК, матричная мРНК (информационная), транспортная тРНК и малые ядерные РНК, роль которых разнообразна, но до конца еще не выяснена. Каждая из синтезированных РНК играет строго определенную роль на втором этапе реализации генетической информации - трансляции . Реализация генетической информации с помощью нуклеиновых кислот происходит по схеме:

Рибосомальная РНК входит совместно с белками в состав рибосом. Матричная РНК, объединяясь с рибосомами, образует полирибосому, в которой с помощью ферментов и транспортных РНК, поставляющих определенные аминокислоты, происходит трансляция — синтез белков в соответствии с информацией, записанной на мРНК. Информация о последовательности аминокислот в молекуле белка считывается с последовательности ге-

тероциклических оснований в мРНК. Конкретная группа из трех гетероциклических оснований в молекуле нуклеиновой кислоты, которая соответствует отдельной аминокислоте, называется кодоном. ( Например, кодон GUA соответствует аспарагиновой кислоте, UGU- валину, UUU- фенилаланину, ACA –аспаргину). Совокупность кодонов составляет генетический код. Генетический код един для всего живого: у любого вида организмов каждая из аминокислот кодируется одним и тем же кодоном или одними и теми же кодонами. (Несколько кодонов могут кодировать одну и ту же аминокислоту, но один и тот же код не способен кодировать разные аминокислоты.)

Денатурация . Подобно денатурации белков происходит денатурация нуклеиновых кислот, сопровождаемая разрушением их третичной и вторичной структур и сохранением первичной структуры. Это происходит под влиянием тех же факторов, что и в случае белков, но интенсивность фактора в случае нуклеиновых ислот, естественно, может быть другой, чем при денатурации белка. Под воздействием того или иного фактора снижается прочность водородных связей и уменьшается эффективность стэкинг-взаимодействия между азотистыми основаниями в макромолекуле. Это способствует раскручиванию двухцепочечных спиралей с образованием неупорядоченных одноцепочечных клубков. Поскольку при денатурации сохраняется первичная структура нуклеиновых кислот, то данный процесс может иметь обратимый характер.

Кислотно-основные свойства . Сильнополярные фосфатные группы нуклеиновых кислот характеризуются значением рКа 1 < 2.

Таким образом, нуклеиновые кислоты — это довольно сильные поликислоты, полностью ионизованные при рН выше 4, и поэтому их поверхность несет отрицательный заряд. Именно это обстоятельство объясняет большую склонность нуклеиновых кислот к взаимодействию с полиаминами, у которых между атомами азота содержатся две или три метиленовые (-СН2 -) группы. Однако особый интерес вызывает кислотно-основное взаимодействие нуклеиновых кислот с белками, которые являются полиамфолитами, образуя комплексные ассоциаты (соли), называемые нуклеопротеинами. Так, ДНК образует прочный комплекс с белками- гистонами, входящими в состав хромосом. Гистоны содержат 25-30 % остатков лизина и аргинина, основные функциональные группы которых при рН = 7 заряжены положительно. Они, электростатически взаимодействуя с отрицательно заряженными фосфатными группами, расположенными на периферии двойной спирали ДНК, образуют достаточно прочный комплексный ассоциат, в котором структура ДНК дополнительно стабилизирована.

Рибонуклеиновые кислоты также образуют с белками нуклеопротеины. Так, рибосомы состоят из 50-65 % рибосомной РНК и 35-50 % белков, содержащих до 25 % основных аминокислот.

Вирусы представляют собой устойчивые комплексные ассоциаты, содержащие до 30 % нуклеиновой кислоты и большое число белковых молекул, уложенных в определенном порядке и образующих специфическую трехмерную структуру. В состав вируса может входить как ДНК, так и РНК.

Окислительно-восстановительные свойства . Нуклеиновые кислоты не содержат групп, склонных к окислительно-восстановительным превращениям при мягком воздействии. Поэтому они относительно устойчивы к воздействию мягких окислителей и восстановителей. При жестком окислении в водной среде нуклеиновые кислоты превращаются, как все органические соединения в организме, в СО2 и Н2 О, а из-за присутствия в их составе атомов азота образуют мочевую кислоту, мочевину или соли аммония; кроме того, из-за наличия фосфатных групп образуются неорганические фосфаты.

К-во Просмотров: 182
Бесплатно скачать Реферат: Нуклезоиды, нуклеотиды и нуклеиновые кислоты