Реферат: О принципиальной возможности аксиоматической перестройки произв0льн0й научной теории

Еще пример на этот вариант "мысленного эксперимента" - это использование в теории тока, рассматриваемой как часть электро-динамики Максвелла, понятия проводника со свойствами проводимости или сопротивления. Эти свойства не рассматриваются в базовой теории, основные понятия которой - это напряженности электромаг-нитного поля Е и Н, а также заряд и сила. Новые свойства проводника – это новые аксиомы. Причем, они не применяется во всей об-ласти действия электродинамики Максвелла, скажем в электростати-ке или магнитостатике.

Следующая проблема, поднятая В.Степиным и требующая здесь разъяснения, связана с одним из отличий методов построения теории в современной физике от методов классической физики. /Речь идет разумеется о генезисе/. Суть его такова:

В классической физике сначала создавались частные теории /"теоретические схемы" но В.С.Степину/ и затем на их основе обобщающая теория, как, например, электродинамика Максвелла на основе электростатики Кулона, магнитостатики того же Кулона, Био-Савара и Ампера, теории электромагнитной индукции Фарадея и т.д. В свою очередь каждая частная теория строилась на основе обобщения экспериментального материала добытого до того. Правда, как отмечает В. Степин, законы этих частных теорий не получались в виде дедуктивного вывода из экспериментальных фактов, а лишь показывалось, что они и выводы из них этим фактам соответствуют. Но, как мы знаем, это обстоятельство полностью соответствует аксиоматическому подходу, поскольку все законы Кулона, Ампера и т.д. есть не что иное как аксиомы, соответствующих частных теорий, а аксиомы, как известно, не доказываются в рамках аксиоматичес-кой теории, т.е. они и не должны выводиться дедуктивно из эмпи-рических фактов, зато должны сами и /или/ выводы из них соответ-ствовать эмпирие, что и имело место. Аналогично строилась и обобщающая теория, только "фактами" для нее служили законы и выводы из них частных теорий. Вся эта картина, таким образом, прекрасно вписывается в аксиоматический подход, но вот в современной физике эта идилия по видимости нарушается.

В связи с обстоятельствами, которые хорошо иллюстрирует в своей книге В.Степин, избавляя меня от необходимости повторять их, в современной физике описанная выше картина зачастую обра-щается,- по крайней мере частично, т.е. на уровне построения част-ных теорий. А именно, частная теория начинает создаваться до того, как накоплен достаточный экспериментальный материал, причем в основу ее ложится математическая гипотеза /вместе с соответст-вующим математическим формализмом/, заимствованная по аналогии из смежной, уже развитой области физики. А затем начинается про-цесс уточнения понятий, которые вместе с формализмом заимствованы из смежной области, установление соответствия этих понятий /и вы-водов относительно них, вытекающих из гипотезы/ имеющемуся экс-перименту и постановка новых экспериментов под направляющим воз-действием гипотезы. Уточнение сути этой фазы исследования также как и выяснение возникающей здесь проблемы, требующей аксиомати-ческого объяснения, лучше всего разобрать на примерах, на которых концентрируется сам B.Степин.

Первый такой пример - это волновая теория электрона Дирака. По аналогии с волновыми теориями для других областей Дирак написал 4 дифференциальных уравнения для 4-х волновых функций. Трактовку переменных в этих уравнениях он поначалу также принял по аналогии. Затем, решая эти уравления, получил выводы, которые стал проверять на соответствие эксперименту и обнаружил ряд парадоксов таких, например, как вывод, гласящий, что "Электрон без всякого внешнего воздействия, самопроизвольно может излучать два кванта, после чего исчезает"(9) и т.п.

Тогда Дирак изменил физическую трактовку переменных в своих уравнениях /не меняя уравнений/ и получил на сей раз и соответст-вие эксперименту и отсутствие парадоксов.

Другой пример - это процедуры Бора-Розенфвльда при создании ими квантово-релятивистской теории электромагнитного поля. По аналогии с Дираком Бор и Розенфельд использовали математическую гипотезу, перенеся на новую область уравнения электродинамики Максвелла. Но они пошли дальше Дирака методологически, выработав процедуру уточнения смысла понятий переменных в этих уравнениях в приложении их к новой области, процедуру, позволившую значитель-но сократить количество потребного действительного эксперимента, заменив его мысленным. Эту процедуру В. Степин называет "конст-руктивным обоснованием" теоретических объектов гипотезы и она вытекает из того факта, что привязка понятия к действительности, его "надеваемость" на эту действительность связана с принципиаль-ной измеримостью тех свойств, которые лежат в основе определения понятия. Проверять же принципиальнуго возможность измерения можно и в мысленном эксперименте, а не обязательно в активном. Если такой измеримости нет, то понятие неконструктивно, а пользование им может /по В.Степину, а как по мне то и должно/ привести к парадоксам. Используя этот метод Бор и Розенфельд уточнили изна-чальные значения понятий переменных в уравнениях Максвелла, в частности, заменив для новой области значения полевых переменных Е и Н, в уравнениях Максвелла, бывшие значениями электрической и магнитной напряженности в точке поля, на напряженности, усредненные по некоторому элементарному объему в окрестностях этой точки, величина которого /объема/ была связана со свойствами так называемого пробного тела, и доказали в мысленном эксперименте /мысленно построили соответствующий эксперимент,который при желании можно было осуществить и физически/ принципиальную измеримость этих новых величин в новой области. В то время как прежние величины /точечные/ в новой области были неизмеримы, в чем и состоял парадокс, отмеченный Л.Ландау и Р.Пайерлсом и поставившей в тупик физику в тот период.

Исходя из этих двух примеров можно сформулировать суть проблемы, требующей аксиоматического объяснения. Четыре дифференциаль-ных уравнения Дирака есть не что иное, как аксиомы его волновой теории электрона, а переменные в них - не что иное, как базовые понятия этой теории. Но, как мы знаме, аксиомы однозначно определяют базовые ПОНЯТИЯ И наоборот. Как же тогда может быть, что, не меняя уравнений-аксиом, Дирак менял понятия? Аналогично, как Бор и Розенфельд, не меняя аксиом-уравнений, Максвелла, меняли физическое содержание переменных в них, т.е.понятия?

Для того, чтобы разобраться в этом вопросе нужно еще раз углубиться в суть самого аксиоматического подхода. А именно в вопрос о том, как мы делаем выводы из аксиом. Мы делаем их по правилам вывода, которые называем дедуктивными. Но откуда взялись эти правила и что они из себя представляют? Я утверждаю, что эти правила есть не что иное,как аксиомы /или выводы-теоремы из них/ некой метатеории. Точнее, как будет показано в дальнейшем, речь идет о многих даже бесконечном числе метатеорий, вклады-вающихся одна в другую в соотношении метатеория-метаметатеория-метаметаметатеория и т.д. Но пока ограничился метатеорией так сказать первого порядка и покажем на примерах, что правила вывода из аксиом сами есть аксиомы метатеории. Лучшим примером для этого может служить весь тот материал, который рассматривает В. Степин в своей книге, начиная с механики Ньютона и кончая современными физическими теориями. Реальное создание научных теорий, их генезис, по В. Степину /и тут я с ним вполне согласен/ представляет из себя попеременное употребление генетических /конструктивных/ и аксиоматических приемов. Причем в качестве аксиоматического В.Степин рассматривает только дедуктивные построения на базе аксиом /а я говорю, что сюда относится и является даже главной частью и само формулирование аксиом и поня-тий и выяснение их соответствия эмпирие - но не об этом сейчас речь/. А в качестве главного образца этого дедуктивного построения он рассматривает "движение внутри математического формализма", то бишь в данном случае в основном это решение дифференциальных уравнений или их преобразования. А что из себя представляют правила решения дифферещиальных уравнений или их преобразования? А не что иное, как аксиомы или выводы из них - теоремы математи-ческой теории / в принципе аксиоматической/ именуемой в узкой, начальной своей области дифференциальным исчислением или в рас-ширении - матанализом, исчислением бесконечно малых и т.д., с от-ветвлениями в виде теории дифференциальных уравнений и т.п.

Итак показано, что правила получения выводов из аксиом внутри аксиоматической теории являются сами аксиомами /или выводы из них/ некой метатеории. Аксиомами, естественно, отличными от базовых аксиом рассматриваемой теории. Например, аксиомы дифференциального исчисления, разработанные тем же Ньютоном, это не аксиомы его же механики, хотя для того, чтобы получить выводы из 2-го закона Ньютона /одной из аксиом его механики/: F=md’’s/dt, мы решаем это дифференциальное уравнение по правилам-аксиомам метатеории - дифференциального исчисления. Уточним здесь понятие метатеории. С одной стороны это теория, область действия которой накрывает и превосходит область действия данной. Скажем исчисление бесконечно малых применимо не только в механике Ньютона или физи-ке вообще, но и в биологии и в экономике, т.е. везде, где оправ-дано допущение непрерывности и дифференцируемости, /причем только там, где это допущение оправдано, и поэтому эта метатеория не применима для каждой области даже физики, не говоря об экономике и биологии/. С другой стороны метатеория не является заменой, альтернативой теории, для которой она служит мета. Она не трогает ее аксиом, она,если можно так выразиться, индеферентна к ним. Этим она отличается от вкладывающихся /или охватывающих друг друга/ теорий сменяющцих друг друга в процессе развития науки, как, скажем, Эйнштейновская механика в отношении Ньютоновской, у которых аксио-мы и понятия одной заменяют аксиомы и понятия другой, или как в случае кинетической и классической теории газов, большая теория дает основание, дедуктивный вывод аксиом меньшей /частной/ теории (но не правила вывода из них).

Как сказано выше, существует не одна метатеория. Это следует хотя бы из того, что в современной физике используются далеко не только дифференциальные уравнения в качестве математического аппарата. Но, что нам важно здесь отметить и показать, это сущест-вование вкладывающихся друт в друга метатеорий, т.е. метаметатеорий и т.д. Это следует хотя бы из того, что при аксиоматичес-ком построении самой метатеории, т.е. при получении выводов из ее аксиом, мы опять же пользуемся некими правилами вывода, которые есть аксиомы /или следствия из них/ теперь уже метаметатеории, и т.д. до бесконечности. Такими метатеориями /метамета...мета/ могут служить одна для другой различные разделы математики, скажем, алгебра для дифференциального исчисления /но не теория пределов, которая относится к диффе?

К-во Просмотров: 129
Бесплатно скачать Реферат: О принципиальной возможности аксиоматической перестройки произв0льн0й научной теории