Реферат: О способах обучения младших подростков математике

В настоящее время в образовательной практике России сложилась ситуация, когда большое количество выпускников классов, обучающихся в начальной школе по системе развивающего обучения Д.Б. Эльконина – В.В. Давыдова, переходят в среднее звено общеобразовательных учебных заведений. Целью обучения в системе Эльконина – Давыдова является развитие основы теоретического мышления, его основных компонентов: анализа, планирования, рефлексии.

Какие реальные возможности есть у младших подростков в развитии теретического мышления в пятых – шестых классах? На наш взгляд, возрастные возможности младших подростков в содержании и форме обучения математике используются недостаточно. Мы предполагаем, что обучение математике, построенное по содержанию и в форме квазиислледовательской деятельности, может существенно влиять на развитие теоретического мышления младших подростков и на успешность усвоения самого содержания обучения математике. Организованные таким образом занятия позволяют продолжить содержание предшествующего обучения и развития в начальной школе, могут существенно влиять на индивидуальную траекторию интеллекта.

Учащиеся присваивают культурные формы в процессе учебной деятельности, осуществляя при этом мыслительные действия, адекватные тем, посредством которых исторически вырабатывались продукты духовной культуры, т.е. школьники как бы воспроизводят реальный процесс создания людьми понятий, образов, ценностей и норм. Отсюда В.В. Давыдов делает важный вывод о том, что обучение в школе всем предметам необходимо строить так, чтобы оно в сжатой сокращенной форме воспроизводило действительный исторический процесс рождения и развития знаний.

Ученику необходимо научиться исследовать условия задачи, отыскивать связи между свойствами объекта и возможными способами его преобразования. Этим условиям удовлетворяет поисковоисследовательская (квазиисследовательская, по определению В.В. Давыдова) деятельность (3).

Проект культурно-исторического типа школы (В.В. Рубцов, А.А. Марголис, В.А. Гуружапов), охватывающий образовательное пространство от дошкольника до выпускника, предлагает возможность не вообще продолжить учебную деятельность, а строить учение как собственную квазиисследовательскую деятельность, характерную для обучения подростков. Задача приспособления современного человека к многомерности своего бытия может быть решена через снятие в процессе обучения самих форм исторических типов сознания и деятельности, т.е. обобщенных (и исторически определенных) способов работы с миром вещей и миром идей. Третья ступень культурноисторического типа школы, соответствующая возрасту 10 – 14 лет, должна, по замыслу авторов, создавать условия необходимым образом моделирующие формы, присущие такому типу деятельности как исследование (4).

В традиционной системе обучения не ставится задача формирования способности к теоретическому осмыслению явлений действительности, и нет содержания, на котором эту задачу можно было бы поставить, не формируется и способность видеть в отвлеченных формулах реально происходящие процессы.

В практике развивающего обучения объективно существуют два типа квазиислледовательской деятельности. Первый тип: когда учебная деятельность в своей форме воспроизводит способ изложения исследователями результатов своей деятельности. Этот тип поисково-исследовательской деятельности реально отражен в технологии обучения. Вместе с тем, этот тип может быть назван дискуссионно-аналитическим.

В то же время, в практике развивающего образования у ученика часто возникают переживания сродни переживаниям исследователя, первооткрывателя, что является проявлением аналогов исследовательского подхода к изучаемому предмету. На фоне этих переживаний и учебная деятельность претерпевает существенные изменения. Это те самые ситуации, благодаря которым способ производства продуктов духовной культуры сокращенно воспроизводится в индивидуальном сознании школьников, когда ребенок вдруг открывает и сам формулирует закономерности строения объекта, делает самостоятельные широкие обобщения относительно изучаемого материала как бы спонтанно. В этом случае учебная ситуация будет складываться иначе, чем для другого ученика, не испытавшего таких переживаний. Этот тип действий назовем квазиисследовательской деятельностью второго типа. Первый тип развития более проработан в технологии развивающего образования. Второй тип также имеет место в рамках системы Эльконина – Давыдова. Реально ситуации второго типа возникают редко. Благодаря особому содержанию программ, в учебном процессе закономерно возникают ситуации возможного духовного взлета учеников, хотя сам момент «открытия» для учителя и для ученика, как правило не предсказуем. В узловых, поворотных точках образовательных траекторий, в которых принципиально возможен скачок в развитии детей, следует быть готовым поддержать учеников в попытке выйти на более высокую образовательную траекторию.

В.А. Гуружапов высказал предположение, что второй тип исследовательской деятельности в начальной школе, который возникает случайно в силу самого содержания, в подростковом возрасте может специально культивироваться через совершенствование методики обучения, т.к. содержание предметов теоретических дисциплин само по себе предполагает широкие обобщения (1, 2).

Наиболее отчетливо способность учеников к такому типу деятельности проявляется при решении нестандартных задач, где фактически нужно проводить миниисследование при анализе условия и решении задачи.

Рассмотрим для примера логико-предметный анализ одной из таких задач.

Задача. Нанизывание рябины на проволоку представляет собой равномерный процесс (при условиях плотного расположения ягод и их одинакового размера). Его характеристики: S – длина проволоки (нити), занятой рябиной, Т – количество использованных ягод (см. рисунок).

Оборудование: проволока, линейка, рябина, весы бытовые, весы лабораторные, небольшая чашка, стеклянная банка (мензурка), резинка.

1) Сколько потребуется ягод, чтобы заполнить нитку заданной длины (S)?

2) Какой длины нить может быть заполнена данным количеством ягод? (Ягоды насыпаны в мензурку).

Предполагаемые способы решения задачи 2).

1. Непосредственное нанизывание ягод достаточно трудоемко по времени, хотя возможно в принципе.

2. Выяснить, какая длина нити (Е) заполнится определенным количеством ягод (например, Т1=10 шт.). Пересчитать все ягоды (Т). Найти Т/Т1=N. Найти искомую длину S=Е·N.

3. Зафиксировать некоторую длину нити (Е). Выяснить, сколько ягод потребуется для ее заполнения (Т1). Пересчитать все ягоды (Т). Найти Т/Т1=N. Найти искомую длину S=Е·N.

4. Взвесить все ягоды. Разбить их на N равных частей. Нанизать одну такую часть ягод на нить. Измерить полученную длину (Е). Найти искомую длину S=Е·N.

5. Если ввести запрет на пользование весами. Отсыпать до краев в маленькую чашку из банки ягоды. Нанизать их на нитку, и измерить длину занятой части (Е). Узнать сколько таких чашек умещается в банке (N). Найти искомую длину S=E·N.

Приведем описание реального решения задачи 2) обучающимися 5 класса гимназии №10 г. Пушкино в начале учебного года. Задача была предложена после решения задачи 1) на предыдущем занятии.

Учитель: В мензурку насыпана рябина. (Верхний уровень рябины отмечен резинкой). Имеется проволока. Задача обратная той, которую мы решали в прошлый раз. Кто догадался, какую мы сегодня будем решать задачу?

Сергей: Сколько проволоки понадобится на какоето количество рябины?

У: Верно. Дана рябина. Какой длины проволоку нужно взять, чтобы нанизать на нее всю эту рябину?

Лиана: Мне кажется, на проволоку надо нанизать 10 ягод, потом отмерить, сколько это будет сантиметров.

Дети: А откуда ты знаешь, сколько там всего рябины?

У: Можно ли дополнить способ Лианы?

Поля: Нужно подсчитать, сколько всего находится рябининок в мензурке, и умножить на количество рябининок длину 10 ягод.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 169
Бесплатно скачать Реферат: О способах обучения младших подростков математике