Реферат: Обгрунтування вибору сигналу для систем тропосферного зв`язку з кодо
де с і n – постійні величини, при чому n >1.
Сигнали, що входять в систему повинні забезпечувати мінімально можливий рівень взаємних перешкод, який в основному визначається допустимим рівнем піків ВКФ.
, ( 10)
де α – пікфактор ВКФ, в загальному випадку залежить від В .
Чим менше α , тим кращі взаємокореляційні властивості. Через це зараз існує наступна не вирішена проблема – розробка алгоритмів побудови великих систем ФМ ШПС з високими кореляційними властивостями. Алгоритми побудови систем ФМ повинні бути детермінованими, оскільки сигнали повинні бути відомі в точці прийому.
3. Вибір сигналу для систем тропосферного зв’язку з кодовим розподілом каналів
Відома різноманітна кількість ШПС. Загальної термінології не існує, але ШПС можна розбити на частотно-модульовані (ЧМ) сигнали, багато-частотні (БЧ) сигнали, фазоманіпульовані (ФМ), сигнали з кодово-частотною модуляцією (КФМ), дискретні складні частотні сигнали (ДСЧ), складні сигнали з кодово-частотною модуляцією (СКЧМ) [3].
Іноді ФМ сигнали називають просто ШПС ДЧ сигнали зі «стрибаючою» частотою (ППРЧ).
Рис. 6,а. ЧМ сигнал та його частотно-часова площина
ЧМ сигнали є безперервними сигналами, частота яких змінюється по заданому закону. На рис. 6,а показано ЧМ сигнал, частота якого змінюється по V-подібному закону від f 0 -F /2 до f 0 +F /2, де f 0 – несуча частота сигналу, F – ширина спектру, яка дорівнює девіації частоти F =Δ f , тривалість сигналу дорівнює Т . На рис. 6,а зображено частотно-часову площину, на якій штриховкою, приблизно зображено розподіл енергії ЧМ сигналу по частоті і по часу. База ЧМ сигналу по визначенню: B =FT =Δ fT .
|
Рис. 6,б. БЧ сигнал та його частотно-часова площина
Багаточастотні сигнали являють собою суму N гармонік U 1 ( t )… U n ( t ) , амплітуди та фази яких визначаються у відповідності із законом формування сигналів. На частотно-часовій площині (рис. 6,б) штриховкою виділено розподіл енергії одного елемента БЧ сигналу на частоті fk . Всі елементи повністю перекривають виділений прямокутник зі сторонами FT . База сигналу В дорівнює площі прямокутника. Ширина спектру елементу . Через це база БЧ сигналу буде:
. ( 11)
Тобто співпадає з кількістю гармонік. БЧ сигнали є безперервними і для їх формування та обробки складно пристосувати цифрову техніку. Крім цього БЧ сигнали мають наступні недоліки:
- поганий пікфактор:
; ( 12)
- для отримання великої бази необхідно мати велику кількість частотних каналів.
Через це БЧ сигнали не мають перспективи розвитку.
Дискретно-частотні сигнали являють собою послідовність радіоімпульсів, несучі частоти якого змінюються по заданому закону. Нехай кількість імпульсів в ДЧ сигналі рівне М , тривалість імпульсу рівна , його ширина спектру . На частотно-часовій площині (рис. 7) штриховкою виділені квадрати, в яких розподілена енергія імпульсів ДЧ сигналу. База імпульсу ДЧ сигналу становить F 0 Т 0 =1.
Із цього виразу випливає, що основною перевагою ДЧ сигналів для отримання необхідної бази В є число каналів , тобто значно менша ніж для БЧ сигналів. Саме ця перевага і обумовила увагу до цих сигналів і їх використання в системах зв’язку [3].
Разом з цим для великих баз В =104 …106 використовувати лише ДЧ сигнали не доцільно, так як кількість частотних каналів М =102 …103 , що є надзвичайно великою.
Рис. 7. Частотно-часова площина ДЧ сигналу
Дискретними складними частотними сигналами є ДЧ сигнали, у яких кожен імпульс замінено шумоподібним сигналом. На рис. 8 зображено відеочастотний ФМ сигнал, окремі частини якого передаються на різних несучих частотах.
Номери частот вказані над ФМ сигналом. На рис. 8 зображено частотно-часову площину, на якій штриховкою виділено розподіл енергії ДСЧ сигналу.
База ДСЧ сигналу:
. ( 15)
– число імпульсів ФМ сигналу в одному частотному елементі ДСЧ сигналу. Кількість імпульсів повного ФМ сигналу дорівнює . Зображений ДСЧ сигнал містить в якості елементів ФМ сигнали. Через це такий сигнал можна назвати ДСЧ-ФМ сигналом. Якщо база ДСЧ сигналу , то база всього сигналу .
|
|
|
|
|
|
|