Реферат: Общая биология

Образованию веретена деления в телофазе один предшествует расхождение центриолей к полюсам клетки. От ценриолей начинается образование нитей веретена. У растений нити веретена начинают формироваться от полюсных скоплений микротрубочек.

Движение клеток. Органоиды движения.

Живые организмы состоящие из одной клетки часто обладают способностью к активному движению. Механизмы движения, возникшие в процессе эволюции, весьма разнообразны. Основными формами движения являются – амебоидная и с помощью жгутиков. Кроме того, клетки могут передвигаться путем выделения слизи или за счет движения основного вещества цитоплазмы.

Амебоидное движение получило свое название от простейшего организма – амебы. Органами движения у амебы являются ложные ножки – псевдоподобии являющиеся выступами цитоплазмы. Образуются они в разных местах поверхности цитоплазмы. Могут исчезать и появляться в другом месте.

Движение с помощью жгутиков характерно для многих одноклеточных водорослей ( например хламидомонады), простейших (например эвглена зеленая) и бактерий. Органами движения у этих организмов являются жгутики – цитоплазматические выросты на поверхности цитоплазмы.

Химический состав клетки.

Химический состав клетки тесно связан с особенностями строения и функционирования этой элементарной и функциональной единицы живого.

Как и морфологическом отношении наиболее общим и универсальным для клеток представителей всех царств является химический состав протопласта. Последний содержит около 80% воды, 10% органических веществ и 1% солей. Ведущую роль в образовании протопласта среди них прежде всего белки, нуклеиновые кислоты, липиды и углеводы.

По составу химических элементов протопласт чрезвычайно сложен. В нем содержатся вещества как с небольшим молекулярным весом так, так и вещества с крупной молекулой. 80% веса протопласта составляют высоко молекулярные вещества и лишь 30% приходится на низкомолекулярные соединения. В то же время на каждую макромолекулу приходятся сотни, а на каждую крупную макромолекулы тысячи и десятки тысяч молекул.

Если рассматривать содержание в клетке химических элементов, то первое место следует отдать кислороду (65-25%). Далее идут углерод (15-20%), водород (8-10%) и азот (2-3%). Количество остальных элементов, а а их в клетках обнаружено около ста, значительно меньше. Состав химических элементов в клетке зависит как от биологических особенностей организма, так и от места обитания

.Неорганические вещества и их роль в жизнедеятельности клетки.

К неорганическим веществам клетки относятся вода и соли. Для процессов жизнедеятельности из входящих в состав солей катионов наиболее важны K , Ca , Mg , Fe , Na , NH , из анионов NO , HPO , HPO.

К клетках растений ионы аммония и нитратов восстанавливаются до NH и включаются в синтез аминокислот; У животных аминокислоты идут на построение собственных белков. При отмирании организмов включаются в круговорот веществ в форме свободного азота. Входят в состав белков, аминокислот, нуклеиновых кислот и АТФ. Если фосфоро-фосфаты, находясь в почве, растворяются корневыми выделениями растений и усваиваются. Входят в состав всех мембранных структур, нуклеиновых кислот и АТФ, ферментов, тканей.

Калий содержится во всех клетках в виде ионов К . «Калиевый насос» клетки способствуют проникновению веществ через клеточную мембрану. Активизирует процессы жизнедеятельности клеток, возбуждений и импульсов.

Кальций содержится в клетках в виде ионов или кристаллов солей. Входит в состав крови способствует ее свертыванию. Входит в состав костей , раковин, известковых скелетов коралловых полипов.

Магний содержится в виде ионов в клетках растений. Входит в состав хлорофилла.

Ионы железа входят в состав гемоглобина, содержащегося в эритроцитах, которые обеспечивают транспорт кислорода.

В процессе транспорта веществ через мембрану участвуют ионы натрия.

На первом месте среди веществ , входящих в состав клетки, стоит вода. Она содержится в основном веществе цитоплазме, В клеточном соке, в кариоплазме, в органоидов. Вступает в реакции синтеза, гидролиза и окисления. Является универсальным растворителем, и источником кислорода. Вода обеспечивает тургор, регулирует осмотическое давление. Наконец это среда для физиологических и биохимических процессов происходящих в клетке. С помощью воды обеспечивается транспорт веществ через биологическую мембрану, процесс терморегуляции и прочее.

Вода с другими компонентами – органическими и неорганическими, высокомолекулярными и низкомолекулярными – участвует в образовании структуры протопласта.

Органические вещества (белки, углеводы, липиды, нуклеиновые кислоты, АТФ), их строение и роль в жизнедеятельности клетки.

Клетка является той элементарной структурой, в которой осуществляются все основные этапы биологического обмена веществ и содержаться все основные химические компоненты живой материи. 80% веса протопласта составляют высокомолекулярные вещества – белки, углеводы, липиды, нуклеиновые кислоты.

Среди основных компонентов протоплазмы ведущее значение принадлежит белку. Макромолекула белка имеет наиболее сложный состав и строение, и характеризуется чрезвычайно богатым проявлением химических и физико-химических свойств. В ней заключено одно из важнейших свойств живой материи – биологическая специфичность.

Основным структурным элементом молекулы белка являются аминокислоты. В молекулах большинства аминокислот содержится по одной карбоксильной и аминной группе. Аминокислоты в белке связаны между собой посредством пептидных связей за счет карбоксильных и - аминных групп, то есть белок это полимер, мономером которого являются аминокислоты. Белки живых организмов образованы двадцатью «золотыми» аминокислотами.

Совокупность пептидных связей, Объединяющая цепочку аминокислотных остатков, образует пептидную цепь – своеобразный хребет молекул полипептида.

В макромолекуле белка различают несколько порядков структуры – первичную, вторичную, третичную. Первичную структуру белка определяет последовательность аминокислотных остатков. Вторичная структура полипептидных цепей представляет сплошную или прерывистую спираль. Пространственная ориентация этих спиралей или совокупность нескольких полипептидов составляют систему более высокого порядка – третичную структуру, характерную для молекул многих белков. Для крупных молекул белка такие структуры являются лишь субъединицами, взаимное пространственное расположение которых составляет четвертичную структуру.

Физиологически активные белки имеют глобулярную структуру типа клубка или цилиндра.

Аминокислотная последовательность и структура определяют свойства белка, а свойства определяют функцию. Существуют белки не растворимые в воде, а есть белки свободно растворимые в воде. Есть белки растворимые только в слабых растворах щелочи или 60-80% спирте. Отличаются и белки по молекулярному весу, а отсюда по размерам полипептидной цепи. Молекула белка под воздействие определенных факторов способна разрываться или раскручиваться. Это явление носит название денатурации. Процесс денатурации обратим, т. е. белок способен менять свои свойства.

Функции белков в клетке разнообразны. Это прежде всего строительные функции – белок входит в состав мембран. Белки выступают в роли катализаторов. Они ускоряют реакции обмена. Клеточные катализаторы называют ферментами. Выполняют белки так же транспортную функцию. Ярким примером является гемоглобин – агент по переносу кислорода. Известна защитная функция белков. Вспомним образование в клетках веществ, которые связывают и обезвреживают вещества способные нанести вред клетке. Хотя и незначительно, но белки выполняют энергетическую функцию. Распадаясь на аминокислоты они выделяют энергию.

К-во Просмотров: 357
Бесплатно скачать Реферат: Общая биология