Реферат: Общая модель волн материи. Формула Де-Бройля. Частица в "ящике" и частица на "орбите"
= 9.63´10-19 Дж2´с2´кг –1´м –2
Размерность: Дж2´с2´кг –1´м –2 = Дж2´ (н-1´м-1) = Дж 2´ Дж-1= Дж
Bt=9.63´10-19 Дж
В системе CGSE эта величина в эргах по модулю на 7 порядков больше:
Bt=9.63´10-12 эрг
Легко построить диаграмму уровней "ящика", откладывая соответствующие отметки на оси ординат – оси энергии (см семинар по ящику с применением уравнения Шрёдингера). В пересчёте к привычной шкале на один моль это даёт
Bt=9.63´10-19´6.023´1023 Дж » 57.7´104 Дж/моль » 577 кДж/моль.
Получен порядок величин энергетических уровней в систем СИ, для частицы, "зажатой" в объём, который примерно вдвое - втрое больше размера атома. Это значение резко и быстро падает, если размер "ящика" возрастает…
На дистанции, скажем в 15 ангстрем (это примерно расстояние между частицами газа при нормальных условиях) это значение упадёт в 36 раз и будет порядка лишь 15 кДж/моль. Дальше-больше!
И это для очень лёгкого электрона.
А если частица уже хотя бы атом водорода, который примерно в в 1840 (»2000) раз более тяжёлая частица, то дистанция между поступательными уровнями становится очень малой – практически неощутимой. Джоули на один моль – этот порядок величины экспериментально неуловим. Возникает практически континуум –непрерывное распределение поступательной энергии молекулярного движения. Этот результат для нас необычайно важен.
2. Частица на круговой орбите.
Простая количественная модель, позволяющая воспроизвести количественно уровни АО атома H и водородоподобных ионов (формулу Бора) также основана на волнах Де-Бройля.
В этой, также идеальной, задаче вычисления почти столь же несложные, как и в предыдущей.
Мы будем далее многократно иметь дело с её физическим содержанием.
Наша первая цель: пусть эклектическая, “лоскутная”, в какой-то мере теоретически дерзкая и живописная попытка количественно описать уровни реальных физических систем с их хорошо регистрируемыми в эксперименте проявлениями.
Строгость выводов – потом, а сейчас - поскорее к цели...
Задача 2.1.
Получить формулу квантования уровней частицы, обращающейся по круговой орбите.
Условия задачи:
Пусть частица движется по кругу в поле центральной кулоновской силы, создаваемой ядром с порядковым номером Z. Это атом водорода (Z=1) или водородоподобный ион (Z>1). Заряд ядра равен , в его поле движется всего один электрон.
Центростремительная сила, удерживающая частицу на круговой орбите, имеет кулоновскую природу, т.е. обратно пропорциональна квадрату расстояния.
Отсюда следует “теорема вириала”, определяющая взаимосвязь между кинетической и потенциальной энергиями в поле центральной силы.
По этой теореме: Кинетическая энергия равна половине потенциальной, но с положительным знаком, а полная энергия равна половине потенциальной и также отрицательна (2.5).
ВНИМАНИЕ! Используется система СГСЕ.
При стационарном движении частицы по кругу в поле центральной кулоновской силы, на замкнутой “круговой орбите” укладывается целое число волн материи
2p r = nl, "nÎN{1,2,3,... }. (4.3)
Использование длины волны де Бройля приводит к выводу о том, что квантованной оказывается величина L, похожая на модуль момента импульса: