Реферат: Общие сведения о термодинамических системах
Рассмотрим в качестве примера работу, связанную с изменением объема системы:
или с изменением электрических
или магнитных полей
.
В общем виде работу под действием изменяющегося внешнего поля можно записать в виде:
.
Таким образом, реакция системы на изменение ее параметров сводится к заданию величин как параметров термодинамического состояния
, . (1.5)
Выражение (1.5) называется уравнением состояния термодинамической системы(термическими уравнениями состояния). Так, для однородной системы имеется одно уравнение состояния:
.
Очевидно, конечная работа перехода из состояния 1 в состояние 2 определяется из суммирования величин :
. (1.6)
Тепловые воздействия на систему осуществляется посредством сообщения ей некоторого количества тепла . Считается, что , если система получает тепло и , когда система отдает тепло.
Обычно нагреваемые и охлажденные системы связывают с изменением ее температуры и понятием теплоемкости С :
. (1.7)
Однако задание величины не имеет особого смысла, так как эта величина зависит не только от параметров состояния , но и от типа процесса. Известно , например, что теплоемкость при изотермическом процессе принимает значение , а при адиабатном процессе она равна нулю.
Таким образом, для характеристики реакции термодинамической системы по отношению к нагреванию необходимо наложить какие-либо дополнительные условия на теплоемкость. Наиболее очевидным является фиксация всех параметров системы кроме температуры (в нашем случае это и ):
, (1.8)
где - удельная теплоемкость термодинамической системы. Уравнение (1.8) получило название калорического уравнения состояния.
Состояние термодинамической системы считается полностью заданным, если заданы параметры системы, уравнение состояния (1.5) и калорическое уравнение состояния (1.8)
3. Несмотря на то, что энергетические взаимодействия весьма распространены в природе, сфера применения термодинамики не является неограниченной. Часть ограничений связана с рассмотренными ранее особенностями термодинамических систем. Кроме того, ряд ограничений связан с тем, что при исследовании термодинамических систем, в основном, рассматриваются квазистационарные (квазистатические) процессы. Их определяют как бесконечно медленные процессы, состоящие из бесконечной последовательности равновесных состояний, предельно мало отличающихся друг от друга. Таким образом, в действительности изучается не реальный процесс, а его предельный случай.
Основным преимуществом такого процесса является его обратимость.
В качестве примера рассмотрим сжатие газа в сосуде при помощи поршня. Если движение поршня осуществлять медленно, то газ успевает равномерно распределиться по всему объему сосуда. Таким образом, каждое из состояний а, б и в на рис.1.5 является равновесным. Обратное движение поршня также осуществляется через последовательность равновесных состояний (в, б и а). Это свидетельствует об обратимости квазистационарного процесса.
Пусть теперь процесс будет нестационарным (Поршень движется столь быстро, что газ в сосуде не успевает равномерно распределиться). В этом случае вблизи поршня возникают “газовые уплотнения”, области повышенной плотности по сравнению с основным объемом газа. Если движение поршня прекращается, то плотность в сосуде через некоторое время выравнивается.
В случае обратного процесса (последовательность состояний е - д- - г) вначале вблизи поршня должен образоваться “газовый сгусток”, а затем начаться обратное движение поршня. И если еще можно допустить наличие некоторой мощной флуктуации, делающей газ неоднородным с повышенной плотностью в окрестности поршня, т.е. предположить, что система заранее “узнает” о движении поршня в принципе невозможно. Кроме того, хорошо известно, что при быстром расширении газа в окрестности поршня будет наблюдаться область не повышенной, а пониженной плотности.
Таким образом, нестационарный процесс не является обратимым.
Возникает вопрос, каким критерием следует руководствоваться, чтобы считать термодинамический процесс квазистатическим? Как правило, в качестве такого критерия выбирают время перехода системы в равновесное состояние (время релаксации системы ). В том случае, если характерное изменение макроскопических параметров переходит за время ,которое