Реферат: Очистка хромосодержащих сточных вод
Особенно важна экологическая сторона данной проблемы, так как соединения хрома(III) и особенно хрома(VI) оказывают на организм человека общетоксическое, аллергенное, концерогенное мутагенное действие. При биохимической очистке сточных вод неиспользованный хромовый дубитель при повышенных концентрациях оказывает токсичное действие на микрофлору. В связи с этим для соединений хрома в России и за рубежом установлены следующие значения ПДК (мг/л по хрому), представленные в таблице.
Таблица №1
Нормативы ПДК (мг/л, по хрому)
Характеристика воды | Предельно допустимая концентрация, мг/л | |
Трехвалентный хром | Шестивалентный хром | |
1.Вода санитарно-бытового назначения 2.Сточные воды, направляемые на биологическую очистку 3.Сточные воды, сбрасываемые в водоемы после очистки 4.Вода для орошения сельскохозяйственных культур 5.Питьевая вода | 0.5 2.5 0.1 5.0 < 0.01 | 0.1 0.1 Должны отсутствовать Нет данных Должны отсутствовать |
С целью выполнения ПДК хромосодержащие сточные воды необходимо подвергать очистке на локальных сооружениях. В настоящее время для удаления трех- и шестивалентного хрома, в основном применяют химические и физико-химические методы, такие как реагентная обработка, взаимная нейтрализация, коагулирование и ионообменный метод. Кроме того, возможно использование биологических методов очистки сточных вод содержащих соединения хрома. Сущность этого метода заключается в том, что адаптированный к хромату активный ил при отсутствии свободного кислорода использует химически связанный кислород хромата для окисления органических загрязнений, содержащихся в сточных водах. Последовательное применение вышеперечисленных методов позволяет очистить хромосодержащие сточные воды до концентраций, не превышающих нормативы ПДК.
Очистка сточных вод после процесса хромового дубления.
Цель работы - ознакомление с методикой очистки хромсодержащих сточных вод после процесса дубления с применением методов коагулирования и взаимной нейтрализации.
Коагулированием называется процесс обработки воды химическими реактивами, приводящий к агрегации частиц присутствующих в воде примесей, в результате чего образуются относительно крупные хлопья, легко выделяющиеся из водной среды. При очистке промышленных сточных вод коагулирование может с успехом применятся как для интенсификации процесса механической очистки от тонкодисперсной взвеси, так и для обесцвечивания сточных вод, содержащих окрашенные высокомолекулярные вещества. В качестве коагулянтов применяются гидролизующиеся минеральные соли многовалентных катионов. В отечественной и, особенно, в зарубежной практике применяют соли железа преимущественно хлорное железо и железный купорос FeSO4 *7H2 O. Наряду с солями железа обычно используют алюминийсодержащие коагулянты и чаще всего – очищенный или технический сернокислый алюминий, легко растворимый в воде.
Соли железа, как коагулянты, имеют ряд преимуществ перед солями алюминия: лучшее действие при низких температурах воды; более широкая область оптимальных значений pH среды; большая прочность и гидравлическая крупность хлопьев; возможность использовать для вод с более широким диапазоном солевого состава и т. д.
Эффект коагулирования обусловлен воздействием коагулянта на нерастворимые примеси (коллоидные и грубодисперсные частицы), от которых зависит в основном мутность и цветность воды.
При добавке в воду коагулянта, происходит диссоциация реагента с последующим гидролизом металла.
Me3+ + KOH = Me(OH)2+ + H+
Me(OH)2+ + KOH =Me(OH)2+ + H+
Me(OH)2+ + KOH =Me(OH)3 + H+
___________________________________
Me3+ + KOH =Me(OH)3 + 3H+
Образующийся гидроксид металла является коллоидом, малорастворимым веществом. Коллоиды коагулируют, образуя микрохлопья. Данный кратковременный процесс происходит в смесителях, и этим заканчивается первая фаза коагуляции. Во второй фазе, которая в свободном объеме воды может длится до 60 мин, происходит коагуляция микрохлопьев. При этом микрохлопья адсорбируют на свою поверхность загрязняющие воду коллоидные частицы и могут сами адсорбироваться на поверхность грубодисперсных примесей ( взвешенных веществ). Процесс происходит в камерах хлопьеобразования в условиях умеренного перемешивания воды и заканчивается образованием крупных хлопьев. Устранение хлопьев из воды происходит в отстойниках или флотационных установках.
Данный метод очистки сточных вод нашел широкое применение на предприятиях кожевенно-меховой промышленности, в частности при очистке хромсодержащих сточных вод после процесса хромового дубления и содержащих соединения хрома(III).
Очистка сточных вод, содержащих соединения хрома (III), может быть выполнена за счет применения химических методов, например, взаимная нейтрализация, т.е. использование щелочности сточных вод после процесса золения для осаждения соединений трехвалентного хрома. Предварительно смешивают кислые хромосодержащие сточные воды с наиболее загрязненными щелочными водами после золения и обеззоливания. Смешанный сток при этом имеет pH 8.5, однако, это не обеспечивает качественного выбеления в осадок гидроокиси хрома. Поэтому смешанный сток необходимо дополнительно подщелачивать 5 %-ным известковым молоком до pH 9-10. Подщелоченная жидкость отстаивается 1,5 ч., по истечении которых осветленную воду с содержанием трехвалентного хрома 3-5 мг/л сифонируют и смешивают со сточными водами после других технологических операций. Общая загрязненность сточных вод, сводимых по рекомендуемой схеме, значительно уменьшается. Объясняется это тем, что при смешивании кислых и щелочных сточных вод выделяется свежеосажденная гидроокись хромаадсорбирует на своей поверхности тонкодисперсные органические примеси сточных вод, удаляя их в осадок.
Эффект очистки сточных вод от соединений трехвалентного хрома по данному методу в среднем составляет 65-70 %.
Однако применение данных методов имеет ряд недостатков: а именно, в первом случае наблюдается значительный расход коагулянтов, а при нейтрализации – процесс седиментации идет продолжительное время. В связи с этим наиболее простым и эффективным является совместное применение методов коагулирования и нейтрализации, с использованием сернокислого железа (железный купорос FeSO4 *7H2 O)и извести.
При взаимодействии сернокислого закислого железа с известью (при pH-10)образуется гидрат закиси железа Fe(OH)2 , который при доступе кислорода воздуха постепенно окисляется в гидрат окиси железа Fe(OH)3 . В первый момент эти вещества образуют с водой коллоидный раствор. Затем под влиянием электролитов и нескольких других факторов коллоидные частицы гидрозакиси и гидроокиси коагулируют и образуют рыхлый, пористый, хлопьевидный осадок. Коллоидные частицы, а также хлопья коагулянтов обладают высокой сорбционной способностью к основным органическим загрязнениям сточной воды. Поэтому вследствие коагуляции вода осветляется, а из ее состава устраняются грубовзвешанные, коллоидные и истинно растворенные загрязнения.
Расход железного коагулянта составляет 500 мг/л в расчете на безводный продукт, при этом, в зависимости от степени загрязнения сточной воды эта доза может колебаться от 200 до 1000 мг/л, доза извести – от 150 до 300 мг/л в расчете на CaO (pH обрабатываемой воды должен быть равен 10).
Эффект очистки промстоков кожевенных и меховых предприятий методом коагуляции очень высок. Наиболее полно устраняются ХПК (74 % ), ионы хрома (96 %), сульфиды (95 %), анионактивные ПАВ (77 %) и т.д. Важно отметить, что коагуляцией устраняются в основном загрязнения, трудноокисляемые с помощью микроорганизмов. Способность к биохимическому окислению возрастает после коагуляции в 2.5 раза.
Таким образом, совместное применение различных методов, нейтрализации и коагуляции, является важным средством предочистки промстоков кожевенных заводов перед их биологической очисткой. С помощью данного метода можно интенсифицировать процессы биологической и механической очистки.
2. Объекты и методы исследования
2.1 Объекты исследования