Реферат: Очистка промышленных газов от газообразных и дисперсных примесей

При исследовании дисперсно-кольцевого режима в пленочном аппарате скорость газа по сечению трубы измерялась трубкой Пито-Прандтля, температура газа v термопарами. Исследовались трубы с гладкой и шероховатой поверхностью. Шероховатая поверхность создавалась спиралью из проволоки диаметром 3 мм на внутренней поверхности трубы с зазором 0.4v0.8 мм, расстояние между витками проволоки 30 мм. Расход жидкости варьировался от 1 до 15 м3/ч, скорость газа v от 6 до 50 м/с. Измерение средней толщины пленки жидкости осуществлялось методом отсечки питания. Минимальная и максимальная толщина пленки определялась при помощи контактной иглы, свободный конец которой соединялся с микровинтом и прозрачным капилляром. Измерение перепада давления в трубе при сильных взаимодействиях осуществлялось пьезометрическими трубками, расход воздуха определялся при помощи нормальной диафрагмы.

Исследование массоотдачи в жидкости проводилось на примере изотермической абсорбции кислорода из воздуха пленкой жидкости [8]. Опытно-промышленные исследования очистки выбросов от NO2 и SO2 в газе проводились химическим методом. Исходный газ содержал от 10 до 18 мг/м3 дисперсных частиц, от 23 до 73 мг/м3 диоксида азота NO2 и от 38 до 80 мг/м3 диоксида серы SO2 при температуре 140 0C.

При исследованиях эффективности сепарации дисперсных частиц в конденсационном режиме запыленность воздуха создавалась искусственно дозатором. Подача пара в аппарат осуществлялась из электрического парогенератора. Температура воздуха, парогазовой смеси и хладоагента измерялась с помощью термопар. Запыленность воздуха контролировалась счетчиком аэрозольных частиц АЗ-5М [9]. Эффективность сепарации дисперсной фазы оценивалась по количеству конденсата, общая эффективность очистки от пыли v по массе сухого остатка в шламе, фракционная v по массе сухого остатка на бумажных фильтрах с различными размерами капилляров, а также с помощью счетчика аэрозольных частиц АЗ-5М. В отдельных экспериментах результаты контролировались по количеству частиц, уловленных после аппарата на волокнистом фильтре типа ФП (фильтр Петрянова) с фильтрующим материалом ФПП-15-1.7 [10, 11].

На лабораторной экспериментальной установке определялись зависимости гидравлического сопротивления, теплообменных характеристик аппарата и эффективности сепарации дисперсной фазы от начальных характеристик газа, расхода пара на смешение, скорости и угла закрутки потока, дисперсного состава, концентрации и физико-химических свойств пыли в следующих интервалах изменения основных параметров: начальная температура воздуха v 20T¸80 ¦С; начальная влажность воздуха v 40T80 %; объемный расход воздуха v 0.003T0.03 м3/с; удельный расход пара на смешение v 0.01T0.1 кг/кг; массовая концентрация твердых частиц v 0T0.005 кг/м3; температура хладоагента (начальная) v 2T10 ¦С; расход хладоагента v 0.002T0.02 кг/с. В качестве дисперсной фазы в экспериментах использовались порошки различного происхождения с насыпной плотностью от 1000 до 2000 кг/м3 и размерами частиц от 0.1 до 10 мкм: стандартный кварцевый порошок М-1, окись цинка, фосфорит, сажа, антибиотики.

Обсуждение результатов

Исследование дисперсно-кольцевого течения. Гидродинамическая картина дисперсно-кольцевого течения носит сложный характер. Брызгоунос с поверхности пленки приводит к тому, что на расстоянии 1.5v2.0 м доля жидкости в дисперсной фазе достигает 20v80 % от общего расхода, при этом толщина пленки уменьшается и меняется структура волн на ее поверхности. При расчете потери напора в трубчатых насадках аппарата в дисперсно-кольцевом режиме течения по известной зависимости

, (1)

(где DP v потери напора; L v длина трубы; r v плотность газа; w v среднерасходная скорость газа; us=1.15uпл v поверхностная скорость пленки жидкости; uпл v среднерасходная скорость пленки жидкости; hср v средняя толщина пленки жидкости; D v диаметр трубы; l v коэффициент гидравлического сопротивления; n v показатель степени) возникают проблемы в определении коэффициента гидравлического сопротивления на межфазной поверхности.

Для расчета коэффициента гидравлического сопротивления при дисперсно-кольцевом режиме течения модели Локкарта-Мартинелли [12], гомогенного течения [13], а также подход, базирующийся на раздельном течении пленки, газа и жидкости [14], принципиально непригодны. Также неэффективны зависимости, в которых коэффициент гидравлического сопротивления выражается через параметры волн на поверхности пленки [15, 16].

Наиболее приемлемым методом определения коэффициента гидравлического сопротивления представляется его расчет через экспериментальное значение градиента давления. Установлено, что суммарное значение касательного напряжения в канале постоянно по его длине. Эмпирическая зависимость для расчета коэффициента гидравлического сопротивления на межфазной поверхности при дисперсно-кольцевом режиме (как для нисходящего, так и восходящего движении) для гидравлически гладкой поверхности трубы получена в виде

, (2)

где Re0 v относительное число Рейнольдса газа; Reпл = 4G/nn ж v число Рейнольдса для пленки жидкости; n и nж v коэффициенты кинематической вязкости газа и жидкости.

Аналогичные уравнения получены для труб с регулярной искусственной шероховатостью. Величина коэффициента гидравлического сопротивления в зависимости от нагрузок по газу и жидкости и состояния пленкообразующей поверхности изменяется от 0.08 до 2.

Средняя толщина пленки жидкости, через которую рассчитывается скорость пленки, может быть рассчитана по уравнениям, представленным в обзорной работе [17] (другие известные уравнения не учитывают унос жидкости с поверхности пленки, и это приводит к получению завышенных значений толщины пленки при высоких нагрузках по газу, особенно при стекании пленки по поверхности с искусственной шероховатостью).

Показатель степени n в уравнении (1), в отличие от однофазного потока (n = 2) изменяется от 1.4 до 1.8 в зависимости от концентрации капель в ядре потока. Это обусловлено гашением турбулентных пульсаций дисперсными частицами и, как следствие, частичной ?ламинаризацией¦ потока.

Коэффициент массоотдачи при очистке от газообразных выбросов в пленке при изотермической абсорбции труднорастворимых газов в зависимости от расхода газа и жидкости и состояния пленкообразующей поверхности составляет 2Ч10-3v5Ч10-2 м/с [8]. Наибольшая интенсивность передачи массы при дисперсно-кольцевом режиме достигается при движении пленки по поверхности с винтовой крупномасштабной шероховатостью. При неизотермичном процессе в случае испарения жидкости с пленки значения коэффициентов массоотдачи снижаются на 20v50 %. Наличие растворимых поверхностно-активных веществ, снижающих поверхностное натяжение жидкости, приводит к уменьшению коэффициента массоотдачи на 10v30 %. Дополнительный искусственный срыв капель жидкости с поверхности пленки приводит к увеличению эффективности абсорбции. Следует отметить, что все существующие подходы к определению опытных значений коэффициента массоотдачи не учитывают наличие (поверхность) капель в дисперсно-кольцевом потоке, что в ряде случаев приводит к серьезным ошибкам и не позволяет установить истинные значения параметров процесса.

Исследование эффективности разделения. Многочисленные теоретические и экспериментальные исследования прямоточных центробежных сепараторов показывают, что в общем случае эффективность центробежного разделения зависит от начальной концентрации дисперсной фазы, скорости потока, конструктивных особенностей и основных параметров сепаратора, а также характеристик распределения частиц по размерам. Эффективность работы прямоточных центробежных сепараторов, как и различных тепло- и массообменных аппаратов с центробежными сепарирующими элементами, в значительной степени определяется величиной уноса дисперсной фазы паровым или газовым потоком. В некоторых случаях унос может существенно снизить общую эффективность сепаратора.

Уравнение для расчета эффективности улавливания в случае движения закрученного потока газа с аэрозольными частицами в цилиндрическом канале без учета вторичного уноса получено в виде (рис. 3) [18]

h = 1 - exp(8tg2gЧSt`L), (3)

где St = wzd2rd/(18mD) = wzt/D v критерий Стокса; t = d2rd/(18m) v время релаксации скорости частицы [19], `L = L/D v относительная длина канала сепаратора; wz v среднерасходная осевая скорость газа; d v размер частиц; rd v плотность дисперсной фазы; m v коэффициент динамической вязкости газа; g v угол закрутки потока.

Сложность гидродинамических процессов в турбулентном закрученном потоке делает строгое аналитическое решение задачи о центробежной сепарации дисперсных частиц с учетом вторичного уноса практически невозможным. Для этой цели можно использовать данные экспериментальных исследований о скорости уноса частиц с поверхности канала турбулентным потоком.

Рис. 3. Расчетная фракционная эффективность центробежного разделения без учета вторичного уноса:система воздух-вода при 20 ¦С, D = 30 мм, L = 300 мм, g = 45¦

В результате анализа процессов центробежной сепарации и вторичного уноса получена полуэмпирическая зависимость для расчета эффективности разделения в виде

, (4)

где a ¦ 0.01 v доля частиц, захватываемая турбулентным вихрем с поверхности канала [20, 21]; b = a/(270Ч75) ¦ 4.94Ч10-7 v коэффициент.

Расчетная зависимость (4) соответствует дан-ным экспериментальных исследований и наглядно показывает влияние на эффективность очистки газа конструктивных и технологических параметров (рис. 4).

При конденсационном разделении в центробежных сепараторах основным режимом течения двухфазного потока является дисперсно-кольце-вой режим, сопровождающийся течением пленки жидкости по стенке канала и спутным потоком газа или пара, несущего капли жидкости и твердые частицы.

Процесс разделения осуществляется в несколько основных этапов: насыщение аэродисперсного потока паром, конденсационное укрупнение частиц, выделение дисперсной фазы.

Аэрозольные частицы в парогазовой смеси выполняют роль активных центров конденсации, и при достижении соответствующих условий для начала процесса на их поверхности образуются сначала отдельные ядра конденсации (мелкие капли новой фазы), а затем сплошной слой жидкости, толщина которого в дальнейшем продолжает увеличиваться, приводя к укрупнению и утяжелению частиц. При этом смачиваемость и растворимость исходной частицы уже не играют существенной роли, так как конденсация фактически происходит на поверхности жидкого слоя.

Скорость конденсации и диаметр капли для стационарного случая (при постоянной температуре и давлении) и идеального пара можно рассчитать по уравнению Максвелла. При охлаждении парогазовой смеси, движущейся вдоль более холодной поверхности, происходит перенос тепла через прилегающий к ней пограничный слой газа, а затем и конденсация. Если в смеси имеется дисперсная фаза (жидкие или твердые аэрозольные частицы), то конденсация происходит не только на поверхности канала, но и на частицах. Соотношение между массами конденсата, образующегося на частицах и на охлаждаемой поверхности канала, зависит от величины пересыщения и концентрации в смеси дисперсной фазы. При большом количестве центров конденсации в потоке на них конденсируется значительно большее количество пара, чем на стенках канала [22]. Так, при численной концентрации частиц 108 м-3 на них образуется 99 % всего конденсата.

Расчеты и экспериментальные исследования показывают, что конденсационное укрупнение позволяет в обычных условиях увеличить размер частиц от 1 до 10v15 мкм. Конечный размер частиц в значительной степени определяется величиной поверхностной плотности теплового потока и при скорости газа более 30 м/с и численной концентрации более 1012 м-3 слабо зависит от скорости и начального размера, так как в этом случае объем конденсата, образовавшегося на каждой частице, гораздо больше первоначального объема самой частицы. Конденсационное укрупнение частиц в парогазовом потоке целесообразно проводить при сравнительно низких концентрациях дисперсной фазы (до 1012 м-3), высоких тепловых нагрузках и малых скоростях потока (до 30 м/с). При более высоких концентрациях небольшой объем жидкой фазы на каждой частице не может привести к ее ощутимому укрупнению. Увеличение скорости потока приводит к росту энергозатрат на проведение процесса при незначительном увеличении конечного размера частиц.

Механизм осаждения частиц на стенку канала в конденсационном центробежном сепараторе аналогичен другим прямоточным центробежным сепараторам, поэтому основные закономерности процесса аналогичны.

Экспериментально установлено, что в общем случае увеличение осевой составляющей скорости потока снижает общую эффективность сепарации жидкой фазы, а тангенциальной v повышает, однако чрезмерное ее увеличение может привести к срыву жидкой пленки с поверхности осаждения и вторичному уносу. В целом движение восходящего или нисходящего закрученного двухфазного потока отличается широким диапазоном допустимых нагрузок по газу и жидкости (по сравнению с осевым), при этом брызгоунос определяется полной скоростью газа на границе раздела фаз.

К-во Просмотров: 399
Бесплатно скачать Реферат: Очистка промышленных газов от газообразных и дисперсных примесей