Реферат: Океан как источник энергии

Виконав:

студент 655 групи

Иванов Д.А.

Перевірив:

Мельник І.Є.

Дніпропетровськ 2005


Океан как источник энергии

Океаны покрывают более 70% поверхности Земли и являются самыми большими в мире коллекторами солнечной энергии. Потенциал океанов в энергетике велик. Для сравнения, плотность энергии солнечной радиации - 1400 Вт/м², энергии ветра - 1700 Вт/м², а тепловой энергии океанов тропических широт – 300 000 Вт/м²!

Тепловые станции в тропиках

Имеются и другие океанические возобновляемые источники энергии: биомасса и водород, волны и течения, разность в солености морской и речной воды – однако потенциал применения тепловой энергия океанов наиболее велик.В отличие от других возобновляемых источников, тепловая энергии океана по своему энергетическому потенциалу сопоставима с безграничными возможностями поставок первичной тепловой энергии, ожидаемых от термоядерного синтеза. Энергетические объекты мощностью в 1 ГВт могут представлять собой мобильные установки водоизмещением около 100 000 т. В тропической части океанов возможна работа десятков тысяч таких тепловых электростанций практически в непрерывном режиме".

Сергей Хайтун, кандидат физико-математических наук, в.н.с. Института истории естествознания и техники РАН (ИИЕТ РАН), на вопрос о том, как наука смотрит на процесс утилизации тепловой энергии океана, отвечает, что наука свое мнение высказала 150 лет назад в работах французского ученого Д´Арсонваля, и дело теперь за техническим воплощением и поиском оптимальных схем, способных обеспечить максимальную эффективность. Д´Арсонваль еще в 1881 г. впервые высказал идею об использовании солнечной энергии, накопленной в океане в виде тепла. Более чем через 40 лет его ученик, Жорж Клод, наконец воплотил идею в жизнь и построил на Кубе небольшую систему утилизации термальной энергии океана. Ученый выбрал бухту Матанца, в которой большие глубины с высоким перепадом температуры воды подходят к самому берегу. Схема установки проста: в испарителе с частичным вакуумированием испаряется теплая вода с поверхности моря (температура порядка +27°C). Полученный пар вращает лопасти турбин, которые соединены с генераторами. Отработанный пар попадает в конденсатор, для охлаждения которого подается вода с глубины (температура порядка +4°C). Первая экспериментальная установка мощностью 22 кВт потребляла 80 кВт на работу своих насосов.

OTEC на Гавайях

альтернативный энергетический океанический тепловой

Первая успешная мини-OTEC (Ocean Thermal Energy Conversion) закрытой циркуляции была запущена в 1979 г. в Keahole Point (Гавайи). Круглосуточно с августа по октябрь установка производила около 50 кВт, из которых только 12 кВт использовались на полезную нагрузку. В течение нескольких последующих лет испытывались усовершенствованные установки.

Первый японский опытный образец, запущенный на острове Науру в 1981 г., выдавал мощность 100 кВт, хотя полезной мощности было всего 14,9 кВт. Его главным отличием от американского конкурента было расположение станции на острове. Локация не на плавучем основании, а на суше позволила сократить расходы на эксплуатацию судна-носителя, устройство надежных якорных стоянок, подводный силовой кабель для передачи электроэнергии на берег, а, главное, обеспечить большую безопасность обслуживающего персонала.

В 1992 г. на Гавайях был запущен экспериментальный аппарат открытого цикла производительностью в среднем 210 кВт, который проработал до 1998 г.

Сейчас разработки новой ОТЭС при финансовой поддержке правительства США ($600 тыс.) ведет компания Lockheed Martin. Завод по преобразованию тепловой энергии океана в электрическую, производительность которого составит 10 МВт, должен появиться на Гавайях в 2012-2013 гг.

Остров Реюньон (Франция) был объявлен президентом Николя Саркози в январе этого года национальной лабораторией для создания океанической тепловой электростанции. В перспективе, к 2030 г. построенные здесь ОТЭС должны полностью обеспечить потребности в электроэнергии всего острова. Бюджет проекта составляет € 7,7 млн.

Сегодня освоение тепловой энергии океана входит в национальные программы США, Франции, Японии, Швеции, Индии.

Станции в Арктике

Энергию можно получать не только из теплых вод тропических или субтропических районов Мирового океана, но и из северных или южных бассейнов планеты, то есть из вод Арктики и Антарктики. Возможность практической реализации преобразования тепловой энергии океана в арктических районах в своих работах показал в 1980-х гг. Альберт Ильин, руководитель лаборатории энергетики океана Тихоокеанского океанологического института. Автор отмечает не только важность наличия нужного градиента температуры, но также и необходимость достаточной скорости ветра и скорости течения воды в океане. По расчетам А. Ильина, КПД энергетической установки мощностью около 50 кВт в арктических условиях получается в пределах 0,79-2,08%. Речь идет о КПД использования тепла воды, что же касается КПД самой установки, то он достаточно высок и достигает 43%. Эта цифра относится к аммиачной установке мощностью 1 МВт.На возможность использования энергетического потенциала северных широт первым обратил внимание в 1928 г. французский инженер А. Баржо. В качестве нагревателя им предлагалась морская вода с температурой, близкой к 0°С. Холодильником должен был служить морозный воздух. В качестве вторичного рабочего тела было предложено взять такое вещество, которое кипело бы при температуре несколько ниже 0°С и конденсировалось бы в жидкость при температуре минус 20°С. Баржо рекомендовал углеводородные соединения типа пропана, бутана или изобутана.

Действительно, в Северном Ледовитом океане температура в поверхностном слое подо льдом близка к 0°С. Интересно отметить, что градиент температур арктических вод крайне мал – так, на нескольких сотнях метров глубины температура воды доходит примерно до +0,6°С. Там находится теплый промежуточный слой, образовавшийся за счет притока вод атлантического происхождения. Во многих районах Арктики большую часть года температура воздуха ниже -10°С. Например, на Новосибирских островах в году бывает всего 2-4 дня с тем температурой воздуха выше -10°С, на побережье моря Лаптевых таких дней от 10 до 14, а на архипелаге Северная Земля их только 10-12. В остальное время года здесь царствуют морозы. Таким образом, разность температур подледной воды и воздуха составляет в арктических районах более 26°С и может быть использована для генерации электричества. Расчеты ученых показывают, что при таком перепаде каждый 1 м³ морской воды, будучи пропущен за 1 с через преобразователь, позволяет получить около 10 кВт мощности при КПД установки 5%.

Арктические станции работают по так называемому "треугольному" циклу: нагрев и испарение рабочего тела, адиабатное расширение через турбину, изотермическое сжатие при подаче в испаритель с одновременным отводом избыточного тепла в холодильнике. В охлаждающем контуре такой станции необходимо использовать рассол с низкой температурой замерзания. В качестве промежуточного теплоносителя применяется водный раствор хлористого кальция с концентрацией не менее 26 кг на 100 кг воды, который достаточно широко используется в холодильной технике. Промежуточный теплоноситель охлаждается путем разбрызгивания через форсунки оросительного охладителя. Рабочим телом в основном контуре станции служит фреон-12, пары которого приводят в движение турбину с электрогенератором.

Осмотические станции в устьях рек

В ноябре 2009 г. компания Statkraft, крупнейший производитель электроэнергии Норвегии, недалеко от Осло (г. Тофте) построила и запустила первую в мире электростанцию, основанную на осмотическом давлении. Построенная электростанция производит 2-4 кВт электроэнергии – ее эффективность пока составляет 1 Вт с 1 кв. м мембраны, и основное ее назначение – отработка технологии и повышение эффективности до 5 Вт/кв. м мембраны.

"Специалисты Statkraft потратили много сил на разработку этой технологии. Наша ближайшая цель - на прототипной станции протестировать новую мембрану и повысить ее эффективность. Прототип будет работать 2-3 года, на следующей стадии мы запустим пилотную станцию на 1-2 МВт – прежде, чем построим полноценный завод. Самые амбициозные наши цели - построить полномасштабную осмотическую станцию в 2015 г.", – рассказал EnergyLand.info Аслак Оверас (Aslak Overas), представитель компании.

А свою разработку инженеры компании потратили около 10 лет, строительство опытной электростанции заняло чуть более года. Идея использования мембраны для дистилляции воды путем осмоса и дальнейшей генерации энергии была предложена в 1970-х гг. американским профессором Сидни Лоэбом. Изучением осмотической мощности занялись доктор Тор Торсен и доктор Торлиф Холт из независимой исследовательской организации SINTEF, которые в 1996 г. передали компании Statkraft свои наработки.

Пресная и соленая вода разделены полупроницаемой мембраной, пропускающей только пресную воду и препятствующая прохождению соленой воды. Общая площадь мембраны осмотической станции в Тофте 2000 м². Явление осмоса вынуждает пресную воду перетекать в часть с соленой водой. При этом в части камеры с морской водой возникает избыточное давление (осмотическое давление), которого достаточно для приведения в действие гидротурбины, вращающей электрогенератор, который вырабатывает электричество. На станции Statkraft достигнуто избыточное давление в 12 бар, что эквивалентно 120 м водного столба.

Осмотические электростанции наиболее актуальны в устьях больших рек, а около них, как правило, располагаются крупные города. Специалисты Statkraft считают подобные станции наиболее перспективными для северных стран, таких как Россия, Канада и государства Скандинавии, при этом не стоит исключать самые южные части Африки и Америки.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 266
Бесплатно скачать Реферат: Океан как источник энергии