Реферат: Оксид азота(II): новые возможности давно известной молекулы

Строение молекулы окиси азота, во многом сходной с молекулами кислорода, оксида углерода(II) и HCN сообщает ей такое общее с ними свойство, как способность к образованию комплексов. Кроме того, сходство с кислородом проявляется и в парамагнетизме обеих молекул из-за наличия неспаренных электронов. Примером образования комплекса с участием NO служит обнаруженная еще Пристли качественная реакция на нитрат-ион, называемая реакцией "бурого кольца". Сначала под действием сульфата железа нитрат-ион восстанавливается в NO:

6FeSO4 + 2KNO3 + 4H2 SO4

3Fe2(SO4)3 + 2NO + 4H2O

а затем с избытком FeSO4 образуется окрашенный в бурый цвет комплекс:

FeSO4 + NO + H2 O [Fe(H2 O)5NO] SO4

УЧАСТИЕ В ФИКСАЦИИ АЗОТА

В конце XIX века промышленность стала нуждаться в больших количествах азотсодержащих соединений для производства красителей, взрывчатых веществ, удобрений. В связи с этим было заманчивым осуществить технологический процесс горения воздуха по уравнению

N2 + O2 - 2NO - 43 ккал/моль

Достижения термодинамики и кинетики позволили разработать научные основы процесса, который требовал высоких температур как для преодоления высокого активационного барьера, так и для достижения удовлетворительного выхода эндотермической реакции. Термодинамические данные, приведенные ниже, иллюстрируют сказанное:

В 1901 году горение воздуха было впервые осуществлено с помощью дугового метода. Воздух продували через растянутую магнитным полем электрическую дугу с температурой около 4000?С и затем охлаждали газовую смесь с тем, чтобы не дать возможности образовавшейся окиси азота разложиться на азот и кислород. Из-за этого выход NO составляет лишь около 2%, что не играет особой роли, так как затраты на исходное сырье отсутствуют. Тем не менее метод в настоящее время не находит применения из-за большого расхода электроэнергии. Есть надежда, что со временем можно будет достигнуть благоприятных технико-экономических показателей процесса, применяя регенеративные печи и используя тепло ядерных реакторов, и метод войдет в промышленную практику.

В настоящее время основной схемой фиксации азота является синтез аммиака, а окись азота играет важную роль в технологическом процессе последующего превращения аммиака в азотную кислоту. Она получается каталитическим окислением аммиака:

4NH3 + 5O2 - 4NO + 6H2 O

Выполнение реакции на практике натолкнулось на некоторые трудности, важнейшей из которых является возможность сгорания не до окиси азота, а до молекулярного азота. Для предотвращения этого контакт газовой смеси с катализатором должен быть минимальным (около 10- 4 с), поскольку при длительном воздействии катализатора происходит вторичная реакция распада окиси азота на элементы. Через катализатор (тонкую сетку из сплава платины с родием) продувают смесь воздуха с аммиаком (12%), в результате выход окиси азота достигает 98%.

Имеются трудности в технологическом выполнении и следующих стадий, а именно окисления оксида до диоксида азота и его перевода в азотную кислоту. Для того чтобы увеличить недостаточно высокие для заводского процесса скорости реакции окисления окиси азота и последующего растворения в воде двуокиси азота, создают поглотительные камеры большого объема и с сильно развитой внутренней поверхностью.

Итак, вопросы химических превращений оксида азота и его синтеза важны для решения глобальной проблемы фиксации азота. Известно, что общее количество связанного азота на Земле составляет 2,4 " 109 т. Из них 65% является результатом деятельности азотфиксирующих микроорганизмов почвы, 25% приходится на промышленный синтез аммиака. Оставшаяся часть (10%) - результат сгорания азота в его окись в атмосфере за счет высокотемпературных (пожары, грозовые разряды) и фотохимических процессов в верхних слоях атмосферы. Эти процессы составляют источник более или менее постоянных концентраций оксидов азота в атмосфере, и их уровень является оптимальным для поддержания на постоянном уровне химических явлений в атмосфере Земли, прежде всего постоянства концентрации озона.

Стартер фотохимического смога

В настоящее время уже до 0,7 " 108 т азота в год связывается при взаимодействии азота с кислородом воздуха в результате высокотемпературных процессов, вызванных хозяйственной деятельностью. Половина производимой человеком окиси азота образуется в результате сжигания топлива в промышленных установках и другая половина - за счет работы транспорта. Таким образом, действующий двигатель внутреннего сгорания служит основным антропогенным источником NO в атмосфере.

Фронт огня, распространяющийся от искры, достигает температуры около 2800?С. При такой температуре концентрация NO составила бы не менее 2%. При низких температурах окружающей среды оксиды азота термодинамически неустойчивы и распадаются на кислород и азот, но скорость этого процесса очень низка. Таким образом, оксид азота достаточно стабилен и выделяется вместе с выхлопными газами. В целом условия в двигателе поразительно близки параметрам технологического процесса сжигания воздуха.

Попадая в атмосферу, оксид азота постепенно превращается в диоксид путем взаимодействия с озоном и гидроперекисными радикалами. Таким образом, окислы азота накапливаются в нижних слоях атмосферы. Их присутствие вызывает такое хорошо известное явление, как кислотные дожди, и сказывается на последующих превращениях химически активного компонента атмосферы - кислорода.

Молекула кислорода представляет собой бирадикал с неспаренными электронами и носит название триплетного кислорода (3О2). Триплетный кислород имеет энергию диссоциации на атомы 496 кДж/моль. Эта высокая величина служит кинетическим фактором относительной химической инертности кислорода, что является одной из причин нахождения кислорода в свободном состоянии в атмосфере. При возбуждении триплетного кислорода под действием света происходит электронная перестройка, в результате чего возникает молекула синглетного кислорода с парой электронов, принадлежащей одному из атомов кислорода, - так называемый синглет I. На это требуется энергия 92 кДж/моль. Такой кислород нестабилен и быстро распадается. Его среднее время жизни в атмосфере составляет 65 мин.

При дальнейшем возбуждении происходит еще одна трансформация молекулы кислорода и возникает молекула кислорода синглет II. Это возбужденное состояние еще менее стабильно: среднее время существования - 110 с. На его образование из синглета I требуется 63 кДж/моль. Синглетные формы кислорода химически активны:

С их образованием связано важное явление - фотодинамическое действие. Суть его состоит в следующем. Существует группа веществ, которые высокочувствительны к действию света и, поглощая квант, переходят в возбужденное состояние. Эти вещества обладают и другой особенностью - способностью передавать энергию возбуждения молекулам кислорода, переводя их тем самым в синглетное состояние. Такие вещества называют сенсибилизаторами (S).

Оксиды азота и являются активными сенсибилизаторами, вызывающими образование синглетного кислорода:

S + hn S* S* + 3O2 S + 1O2

а далее озона и атомарного кислорода:

O2 + 1O2 O3 + O

Таким образом, в атмосфере накапливаются активные окислители, опасные для живых организмов. Чем выше их концентрация (и, в частности, озона), тем опаснее воздух для здоровья, причем их содержание тем выше, чем больше концентрация оксидов азота (табл. 1).

При недостатке кислорода в двигателе внутреннего сгорания происходит не только полное сгорание бензина до углекислого газа, но и неполное окисление до альдегидов:

R-CH3 + O2 R-CH=O + H2 O

Альдегид

К-во Просмотров: 517
Бесплатно скачать Реферат: Оксид азота(II): новые возможности давно известной молекулы