Реферат: Операционные усилители

Разность входных токов Δ I ВХ – это разность токов, потребляемых входами ОУ.

Входные сопротивления в зависимости от характера подаваемого сигнала подразделяются на дифференциальное (для дифференциального сигнала) и синфазное (сопротивление общего вида).

Входное сопротивление для дифференциального сигнала RВХ. ДИФ – это полное входное сопротивление со стороны любого входа, в то время как другой вход соединен с общим выводом (заземлен).

Входное сопротивление для синфазного сигнала RВХ. СИНФ характеризует изменение среднего входного тока при приложении к входам синфазного напряжения. Оно на несколько порядков выше сопротивления для дифференциального сигнала.

Коэффициент ослабления синфазного сигнала КОС СИНФ определяется как отношение напряжения синфазного сигнала, поданного на оба входа, к дифференциальному входному напряжению, которое обеспечивает на выходе тот же сигнал, что и в случае синфазного напряжения:

(1.5)

С учетом (1.5) напряжение на выходе ОУ, появляющееся при одновременной подаче дифференциального и синфазного входных сигналов, равно .

Для каждого ОУ указывается диапазон изменения UВХ. ДИФ и UВХ. СИНФ , превышение предельных значений которых может привести к потере работоспособности усилителя.

Температурные дрейфы напряжения смещения и входных токов характеризуют изменения соответствующих параметров с температурой и составляют мкВ/°С и нА/°С. Наиболее важно учитывать данные параметры в прецизионных устройствах, так как компенсация их влияния на выходное напряжение затруднительна. Температурные дрейфы являются основной причиной появления температурных погрешностей устройств с ОУ.

Коэффициент влияния нестабильности источника питания КП отношение изменения напряжения смещения ΔЕСМ к вызвавшему его изменению одного из питающих напряжений Δ U П .

К группе выходных параметров относятся выходное сопротивление, напряжение и ток выхода.

Коэффициент усиления по напряжению ОУ К отношение изменения выходного напряжения к вызвавшему его изменению дифференциального входного напряжения при работе усилителя на линейном участке характеристики:

К = ΔUВЫХ /ΔUВХ . (1.6)

Частота единичного усиления f 1 - это частота, на которой модуль коэффициента усиления ОУ равен единице.

Скорость нарастания выходного напряжения - это максимальная скорость изменения выходного сигнала при максимальном значении его амплитуды. Скорость нарастания определяется при подаче на вход усилителя импульса напряжения прямоугольной формы.

2. ПРИМЕНЕНИЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

В настоящее время в электронике широкое распространение получила цифровая обработка сигналов. Цифровые методы, основывающиеся на использовании микропроцессоров, проникли во множество областей радиоэлектроники и привели к созданию совершенно новых способов обработки сигналов. Одновременно наблюдается развитие аналоговой электроники, поскольку по мере развития систем цифровой обработки повышаются требования к качеству входных и выходных аналоговых сигналов. Операционный усилитель является базовым элементом устройств аналоговой обработки сигналов. Поэтому разработчик систем сбора, передачи и обработки измерительной информации должен обладать знаниями параметров ОУ (схем их включения и умением проектировать устройства на основе ОУ). В настоящем разделе рассматриваются некоторые основные применения ОУ в аналоговой схемотехнике.

Отрицательная обратная связь . Во многих случаях ОУ применяется с отрицательной обратной связью. При этом характеристики схемы не зависят от коэффициента усиления операционного усилителя без обратной связи К, а определяются только параметрами внешних элементов.

Принцип введения отрицательной обратной связи иллюстрируется рис. 2.1

Рис. 2.1. Принцип отрицательной обратной связи

Часть выходного напряжения возвращается через цепь обратной связи ко входу усилителя. Коэффициент обратной связи β показывает, какая часть выходного напряжения подается на вход; он может принимать значения от нуля до единицы.

Если, как это показано на рис. 2.1, напряжение обратной связи вычитается из входного напряжения, обратная связь называется отрицательной.

Для физического анализа схемы, представленной на рис. 2.1, допустим, что входное напряжение изменилось от нуля до некоторого положительного значения UВХ . В первый момент выходное напряжение UВЫХ , а следовательно, и напряжение обратной связи βUВЫХ также равны нулю. При этом напряжение, приложенное ко входу операционного усилителя, составит UД = UВХ . Так как это напряжение усиливается усилителем с большим коэффициентом усиления KU , то величина UВЫХ быстро возрастет до некоторого положительного значения и вместе с ней возрастет также величина βUВЫХ . Это приведет к уменьшению напряжения UД , приложенного ко входу усилителя. Тот факт, что выходное напряжение воздействует на входное напряжение, причем так, что это влияние направлено в сторону, противоположную изменениям входной величины и есть проявление отрицательной обратной связи. После достижения устойчивого состояния выходное напряжение ОУ

UВЫХ =KU UД =KU (UВХ – βUВЫХ ).

Решив это уравнение относительно UВЫХ , получим:

K=UВЫХ /UВХ =KU /(1 + βKU ) (2.1 )

При βKU >>1 коэффициент усиления ОУ, охваченного обратной связью составит

K = 1/β (2.2 )

Таким образом, из этого соотношения следует, что коэффициент усиления ОУ с обратной связью определяется почти исключительно только обратной связью и мало зависит от параметров самого усилителя. В простейшем случае цепь обратной связи представляет собой резистивный делитель напряжения. При этом схема с ОУ работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC-цепь, то образуется активный фильтр. Наконец, включение в цепь обратной связи ОУ диодов и транзисторов позволяет реализовать нелинейные преобразования сигналов с высокой точностью.

К-во Просмотров: 618
Бесплатно скачать Реферат: Операционные усилители