Реферат: Опоры
100
Чаще всего используют подшипники нормальной точности – класса 0.
Шариковый радиальный однорядный подшипник (см. рис. 2, а ) является наиболее распространенным. Он предназначен для радиальной нагрузки, но может воспринимать и осевую в пределах 70% от неиспользованной радиальной допускает перекос осей колец не более 0,25°. При равных габаритных размерах из всех конструкций подшипников качения он имеет минимальные потери на трение и возможность наибольшей скорости вращения. Подшипник обеспечивает осевое фиксирование вала в двух направлениях.
Радиально-упорные подшипники (рис. 3, б) воспринимают радиальную и осевую нагрузку (косозубые, конические и червячные передачи), действующую на вал. Одинарный подшипник может воспринимать чисто осевую нагрузку, действующую в одном направлении. Подшипники, смонтированные попарно, воспринимают осевые усилия, действующие в обоих направлениях.
Рис. 3
Шариковые радиальные 2-рядные сферические подшипники могут работать при значительном перекосе до 3° осей внутреннего и наружного колец, обладают способностью самоустанавливания оси вала относительно корпуса. Величина осевой нагрузки, действующей одновременно с радиальной, не должна превышать 20% от неиспользованной допустимой радиальной нагрузки.
Тела качения и кольца подшипников качения изготавливают из высокоуглеродистых шарикоподшипниковых хромистых сталей ШХ9, ШХ15 с термообработкой до твердости 60 … 65 HRCэ и последующим шлифованием и полированием, в некоторых случаях используют стали других марок (нержавеющие, жаропрочные и др.); сепараторы делают из низкоуглеродистой мягкой листовой стали, массивные сепараторы – из бронзы, латуни, алюминиевых и магниевых сплавов, пластмасс. При антикоррозионных и антимагнитных требованиях детали подшипников выполняются из беррилиевой бронзы БрБ-2, нержавеющих немагнитных сталей.
Уменьшение радиальных размеров подшипников возможно как за счет минимизации размеров тел качения (игольчатые подшипники), так и за счет исключения из классической конструкции подшипника внутреннего и наружного колец. Применяются стандартные игольчатые подшипники, состоящие только из тел качения, расположенных в массивном сепараторе; нестандартные насыпные шарикоподшипники, в которых отсутствует сепаратор, роль внутреннего и наружного колец таких подшипников выполняют цапфа вала и неподвижная крышка корпуса, параметры твердости и точности которых должны соответствовать таким же параметрам колец стандартных подшипников.
В подшипниках качения смазка уменьшает трение, шум, отводит тепло, защищает подшипник от коррозии, заполняет зазоры в уплотнениях, обеспечивая герметизацию подшипникового узла. Применяют жидкие, консистентные и твердые смазки.
Жидкие смазки используют при окружной скорости вала выше 10 м/с. Чаще всего применяют минеральные масла: приборное МВП, индустриальное 12 (веретенное), индустриальное 20 и масла с антифрикционными присадками (дисульфит молибдена, графита).
Консистентные смазки (густые мази) применяют при окружной скорости вала до 10 м/с. Корпус подшипникового узла заполняют смазкой в объеме 1/3 его свободного пространства. Наилучшими признаны литиевые смазки: Литол-24, Циатим-221, Циатим-201 и др. Они хорошо удерживаются в узлах трения и не требуют сложных уплотнений, их не рекомендуют применять при большом тепловыделении
Твердые смазки используются в вакууме и специальных средах (графит, дисульфит молибдена, нитрат бора). При повышенных температурах (140 … 275 °С) возможно применение массивных сепараторов из самосмазывающихся пластмасс (Вилан, Тесам-4, фторопласты). Ресурс подшипника определяется временем до повреждения перемычек сепаратора.
Выбор подшипников качения
Типоразмеры подшипников качения ограничены стандартами. Тип подшипника выбирается с учетом величины и направления нагрузки, действующей на вал (радиальная, осевая, радиальная и осевая); характера нагрузки (постоянная, переменная, ударная); частоты вращения; требуемого срока службы механизма в часах (h); конструктивных особенностей и условий работы механизма. Так, для прямозубых цилиндрических, цилиндрических фрикционных передач можно использовать радиальные шарикоподшипники; для косозубых цилиндрических, червячных, конических, винтовых передач – радиально-упорные подшипники.
Внутренний диаметр d подшипника подбирают по диаметру вала, рассчитанному или принятому. Основным критерием для выбора серии подшипника при частоте вращения n > 1 об/мин служит динамическая грузоподъемность. Расчет заключается в определении расчетной динамической грузоподъемности Ср и сравнении этой величины с допустимым значением С adm , приведенным в таблицах для данного подшипника:
Ср £Сadm . (4)
Допустимая динамическая грузоподъемность представляет собой постоянную радиальную нагрузку, которую подшипник с не вращающимся наружным кольцом может выдержать в течение одного миллиона оборотов внутреннего кольца без появления с вероятностью равной 0,9 признаков усталостного контактного разрушения. Значения С adm приведены в таблицах технических характеристик подшипников качения.
Расчетная динамическая грузоподъемность определяется для шариковых подшипников по формуле
Cp = Fred , (5)
где Fred – эквивалентная нагрузка, Н; L – долговечность, выраженная в количестве миллионов оборотов, ее можно выражать через долговечность Lh в часах как
L = 60n∙Lh ∙10–6 , (6)
где n – частота вращения вала, об/мин. Под эквивалентной понимают постоянную радиальную нагрузку, одинаково воздействующую на долговечность подшипников, как и реальная нагрузка, действующая при эксплуатации подшипникового узла. Эквивалентная нагрузка Fred для радиальных и радиально-упорных шарикоподшипников равна
Fred = (VXFr +YFa )Ks ∙Kt , (7)
где Fr и Fa – радиальная и осевая нагрузки на подшипнике, Н; Х и Y – безразмерные коэффициенты радиальной и осевой нагрузок (приведены в таблицах каталогов подшипников); V – кинематический коэффициент, равный 1,0, если в подшипнике вращается внутреннее кольцо, и 1,2 – наружное; К s – коэффициент динамичности нагрузки (при постоянной нагрузке Кs = 1, при переменной Кs = 1,3 … 1,8, при ударной Кs = 2 … 3); К t – температурный коэффициент (при t £ 125 °C Кt = 1, при t = 125 … 150 °C Кt = 1,05 … 1,1).
Выбор подшипника осуществляется в следующей последовательности: принимают тип и внутренний диаметр (по валу) подшипника; вычисляют по (7) эквивалентную нагрузку; по заданной долговечности и рассчитанной эквивалентной нагрузке определяют по (5) расчетную динамическую грузоподъемность. Далее по каталогам подбирают размеры (серию, ширину) подшипника намеченного типа с учетом того, чтобы при выбранном диаметре d выполнялось условие (4).
При намеченном типе и внутреннем диаметре подшипника условие Сp £ Cadm обеспечивается переходом от легких серий подшипника к более тяжелым. Иногда условие (4) обеспечивают изменением типа или внутреннего диаметра подшипника.
Посадки подшипников. Конструкции подшипниковых узлов
Подшипник качения является стандартным узлом, характер посадки его на вал и в корпус обеспечивают путем подгонки соприкасающихся с подшипником поверхностей. Поэтому посадка наружного кольца подшипника в корпус осуществляется всегда в системе вала, а внутреннего кольца на вал – в системе отверстия. Но поле допуска на диаметр d внутреннего кольца расположено не в сторону увеличения номинального размера, как у основного отверстия (поле допуска Н), а наоборот (рис. 4). Это позволяет получить посадки с небольшим натягом, используя для валов поля допусков переходных посадок (js , k, m, n).
При посадке подшипника на вал с большим зазором не обеспечивается требуемая точность центрирования, а в случае посадки с большим натягом уменьшается или полностью исчезает радиальный зазор в подшипнике, что влияет на точность и плавность вращения, вызывает шум и вибрации во время работы и может привести из-за перенагружения к быстрому выходу подшипника из строя.
Для внутреннего кольца подшипника при вращающемся вале и значительных нагрузках применяют посадку с полем допуска на вал n6, при малых нагрузках – js 6, k6.
Рис. 4