Реферат: Определение момента инерции маховика
На рис. 31 схематически показана лабораторная установка, с помощью которой исследуются закономерности поступательного и вращательного движения тел, необходимые для вычисления момента инерции системы.
Маховик 1 насажен на вал 2, который закреплен в шарикоподшипниках 3, 4, что обеспечивает вращение системы вокруг горизонтальной оси. На этом валу закреплены два шкива большего 5 и меньшего 6 диаметров. Диаметры шкивов измеряются штангенциркулем. На ободе каждого шкива имеется штырь для крепления нити с грузом.
На один из шкивов наматывается невесомая и нерастяжимая нить, к свободному концу которой прикрепляется груз 7 массой m. Положение груза относительно пола, т. е. высота h, измеряется длинной линейкой с миллиметровыми делениями.
Измерение времени движения груза 7 до пола осуществляется секундомером.
Для вывода расчетной формулы момента инерции системы могут быть использованы динамический или энергетический подходы. В данном случае предлагается вывод, основанный на законе сохранения и превращения механической энергии.
Пусть груз массой m (рис. 31) находится в покое на высоте h над горизонтальной поверхностью (на высоте h от пола).
?? ?????????? ???????????????? ???????? ???????????? ????? ?????:
и .
Исключая из последних выражений ускорение a, выразим скорость груза v непосредственно перед ударом его о пол:
, (8)
где t - время движения груза с высоты h.
В отсутствие проскальзывания нити можно использовать известную связь между модулями линейной и угловой скоростей:
, (9)
где r - радиус шкива, на который намотана нить с грузом;
u - линейная скорость точек на ободе этого шкива.
Из (8) и (9) получаем выражение для угловой скорости* (шкива, маховика, всей системы) в момент времени t касания груза массой m о пол:
. (10)
При расчете момента инерции системы необходимо учитывать влияние силы трения в подшипниках крепления вала.
В начальный момент система находится в покое, и груз массой m расположен на высоте h от пола. Следовательно, перед началом движения система обладает энергией, равной потенциальной энергии груза, т. е.
. (11)
Если систему предоставить самой себе, то груз массой m будет равноускоренно опускаться, а маховик со шкивами приходить во вращательное движение.
В момент касания грузом пола потенциальная энергия груза переходит в суммарную кинетическую энергию системы и в работу против силы трения в подшипниках:
, (12)
где - кинетическая энергия груза к моменту достижения пола;
- кинетическая энергия вращательного движения маховика со шкивами к моменту достижения пола грузом;
- работа силы трения за n1 оборотов (число оборотов маховика от начала движения груза с высоты h до пола).
Уравнение (12) можно представить в виде:
. (13)
_____________
*Напомним, что любая точка твердого тела, вращающегося вокруг неподвижной оси, имеет одну и ту же угловую скорость.
**При вращении твердого тела вокруг неподвижной оси с угловой скоростью wi - ая частица тела, отстоящая от оси вращения на расстояние ri , обладает линейной скоростью
ui = wri (см. формулу (9)). Значит, кинетическая энергия этой частицы равна:
Ек i =mi×ui 2 /2 = w2 ×mi ×ri 2 .
Суммируя последнее выражение, получим кинетическую энергию всего тела:
Ек = åЕк i = w2 ×åmi ×ri 2 /2.
С учетом (1) получим формулу кинетической энергии твердого тела, вращающегося вокруг неподвижной оси: Еквр . = Iw2 /2.
После падения груза на пол и соскальзывания нити со шкива маховик продолжает вращаться до полной остановки. Это означает, что кинетическая энергия вращающегося маховика полностью перешла в работу силы трения, т.е.
, . (14)
где - работа силы трения за n2 оборотов, т. е. до полной остановки маховика.
Работа силы трения (13) и (14), как неконсервативной (или диссипативной) силы, как правило, отрицательна и в условиях данного эксперимента пропорциональна числу оборотов, совершенных маховиком на первом и втором этапах:
, , (15)
где k - положительный коэффициент, имеющий одно и то же значение в обоих случаях, и который можно представить с учетом (14) в следующем виде:
, . (16)