Реферат: Оптические квантовые генераторы
Недостатком стекла является низкая теплопроводность, что затрудняет создание генераторов большой средней мощности и ограничивает его работу режимом одиночных импульсов.
Средняя мощность в импульсе генерации достигает единиц мегаватт. Коэффициент полезного действия таких генераторов составляет доли процента, их выходное излучение, так же как и у рубиновых ОКГ, носит пичковый характер. Ширина спектра излучения при больших уровнях накачки достигает 20 нм. Излучение ОКГ на неодимовом стекле неполяризовано. Это связано с хаотической ориентацией ионов неодима и оптической однородностью стекла.
Угловая расходимость выходного луча ОКГ на неодимовом стекле достигает обычно единиц угловых минут, что значительно меньше величины расходимости излучения рубиновых ОКГ. Это обусловлено более высокой оптической однородностью стекла.
Газовые оптические квантовые генераторы
В газовых ОКГ, как следует из названия, активной усиливающей средой является газ. Рабочими частицами, переходы между энергетическими состояниями которых определяют генерацию, служат атомы, ионы или молекулы. В соответствии с этим говорят об атомных, молекулярных и ионных ОКГ.
В настоящее время предложено множество методов создания инверсии населенвостей в газовых средах, использувдих электрический разряд, энергию химических реакций, оптическую накачку и т.д.
Наиболее часто инверсия в газовых ОКГ осуществляется в результате электрического разряда, создаваемого непосредственно в самой рабочей среде. Основными механизмами, приводящими к избыточной населенности верхних энергетических уровней в газоразрядных ОКГ, являются следующие процессы:
I. Неупругие столкновения электронов с частицами газа (соударения первого рода), сопровождаемые передачей кинетической энергии движения электронов частицам, которые переходят в возбужденное состояние. Символически такой процесс обозначают
Соударения первого рода приводят не только к прямому возбуждению, но и определяют ступенчатое возбуждение частиц. При не-yupyl'их столкновениях электрона е с возбужденной частицей А* последняя переводится в более высокое энергетическое состояние А**:
Процессы возбуждения частиц путем электронных неупругих соударений первого рода играют основную роль во всех газоразрядных ОКГ.
2. Соударения второго рода между разнородными атомами смеси двух газов. При соударении атомов, один из которых - А* - находятся в возбужденном состоянии, а другой - В - в основном, происходит передача возбуждения от первого атома ко второму. При этом первоначально возбужденный атом переходит в основное состояние, а партнер по соударению - в возбужденное состояние :
Этот процесс происходит эффективно лишь в случае, когда энергии возбужденных состояний взаимодействующих атомов совпадают с точностью до величин порядка kT ( Т - температура газовой смеси). Примером газового оптического квантового генератора, в котором используется механизм, описываемый формулой (122), является широко используемый гелий-неоновый ОКГ.
3. Неупрутие атомно-молекудярные соударения, приводящие к диссоциации молекул с переходом одного из атомов в возбужденное состояние
На рис.80 показано схематическое устройство газового ОКГ. Он состоит из двух основных частей: открытого резонатора, образованного зеркалами 3^ и 3^ , и газоразрядной камеры, наполненной рабочей смесью He-Ne .
Газоразрядная камера представляет собой кварцевую или стеклянную трубку (обычно длиной от 1,5+2 дм до 1,&г2 м и диаметром до &т8 мм), с торцов закрытую плоскопараллельными оптическими окнами, наклоненными под углом Брюстера к оси трубки. Такие окна имеют пренебрежимо малые потери энергии на отражение для волны, поляризованной в плоскости падения, и практически делают невозможной генерацию излучения, поляризованного в перпендикулярной плоскости.
Иногда зеркала укрепляют на концах газоразрядной трубки. Однако такое расположение зеркал значительно усложняет конструкцию вакуумной части ОКГ (необходимо использовать сильфоны для юстировки зеркал) и создает технические трудности для смены зеркал, изменения расстояния между ними, введения в резонатор дополнительных элементов (диафрагм, линз и т.п.). Поэтому конструкции ОКГ с внутренними зеркалами применяются редко и главным образом тогда, котаа необходимо получить генерацию с произвольной поляризацией излучения.
Газоразрядная трубка наполняется рабочей смесью гелия и неона с общим давлением ^-10^ Па. Перед напуском рабочей смеси производят тщательную откачку с интенсивным нагреванием трубки. Для устранения оставшихся после откачки и выделяющихся в процессе работы газов перед отпайкой в трубку вводят геттер обыч но барий), активно поглощающий кислород, водород, азот и другие газы, но не вступающий в соединение с гелием и неоном.
|
Исследования показывают, что усиление активной среды в гелий-неоновом ОКГ невелико и составляет несколько процентов на метр (например, для перехода 3s о -2рц с Л, = 0,6328 стоя оно не превышает А% на метр, для перехода 2Sn -2рц с Д= I, 152 мкм - 12%). Поэтому в резонаторах гелий-неонового ОКГ приходится использовать зеркала с коэффициентом отражения, близким к единице и отличающимся от нее на доли и единицы процентов. При-меняются главным образом зеркала с интерференционными покрытиями. Малый коэффициент усиления активной среды налагает жесткие требования на точность юстировки зеркал резонатора. Так, в случае резонатора с плоскими зеркалами непараллельность их всего в несколько угловых секунд существенно сказывается на выходной мощности. Значительно меньше зависят от юстировки резо-иаторы со сферическими зеркалами. Обычно поворот сферических зеркал от оптимального положения в пределах нескольких угловых минут мало влияет на величину выходной мощности ОКГ. Поэтому в болышнстве газовых ОКГ используют резонаторы со сферическими зеркалами.
Для возбуждения газовой смеси используют либо разряд на постоянном токе, либо высокочастотный разряд. В первом случае в газоразрядную трубку, как показано на рис.80, вводят электроды - катод Щ, анод ('?). Напряжение питания составляет в зависимости от длины разрядного промежутка величину от нескольких сотен вольт до двух-трех киловольт,ток разряда - несколько десятков миллиампер, Высокочастотный разряд возбуждается радиочастотным генератором с мощностью от десятков до сотен ватт, напряжение от которого подводится к внешним кольцевым электродам, накладываемым на трубку.
Мощность генерации ОКГ зависит от парциальных давлений гелия и неона, размеров газоразрядной трубки, от тока (мощности) разряда. На рис.81 представлена зависимость мощности генерации р от давления гелия при различных давлениях неона.Мощность генерации растет с увеличением парциального давления гелия и неона, достигая максимума при общем давлении,, близком к 100 Па, и затем уменьшается. Рост мощности с давлением гелия объясняется увеличением концентрации его атомов, находящихся в мета-стабильном состоянии, что благодаря процессу резонансной передачи энергии атомам неона, описываемому формулой (123), ведет к росту инверсии населенностей рабочей среды и, следовательно, мощности генерации. При больших давлениях газовой смеси время свободного пробега электронов снижается настолько, что они не успевают достаточно ускориться в электрическом поле и приобрести необходимую энергию. Поэтому эффективность возбуждения ато-мов уменьшается. Мощность генерации существенно зависит от соотношения парциальных давлений гелия и неона в газовой смеси. Как показывают исследования, для генерации на переходе 3$^ --— 2/Dn с /I = 0,6328 мкм оптимальное соотношение для неона и • гелия равно I : 5, а для перехода 25^—2^ с Л-= 1,15 мкм оно равно I : 10 при общем давлении смеси около 100 Па.
Важным вопросом получения максимальной выходной мощности является выбор оптимального диаметра газоразрядной трубки. С одной стороны, увеличение диаметра трубки, а значит, и объема активной среды должно приводить к росту мощности генерации. С другой - чрезмерное увеличение диаметра трубки ведет к уменьшению инверсии населенностей рабочей пары уровней. Это связано с тем, что в процессе генерации опустошение нижнего рабочего уровня 2рь происходит посредством каскадных переходов на ме-тастабильный уровень Is , с которого атомы возвращаются в основное состояние, главным образом под влиянием соударений со стенками трубки. Чем больше радиус трубки, тем больше время диффузии атомов неона к стенкам, а значит, время их жизни в состоянии is . В результате на уровне is скашиваются атомы, откуда они в результате электронного возбуждения переходят в состояние 2р и Зр , уменьиая инверсию населенностей. Экспериментально установлено, что для трубок длиной I м оптимальный диаметр составляет 7-8 мм. Для трубок меньшей длины он получается соответственно меньше.
|
На рис.82 приведена типичная для гелий-неонового ОКГ зависимость выходной мощности