Реферат: Оптические методы НК. Прямой контроль в оптической (световой) микроскопии

Оптический диапазон спектра, по определению, принятому Международной комиссией по освещению (МКО), составляют электромагнитные волны, длина которых от 1 мм до 1 нм (рис. 1).

Оптические методы НК основаны на использовании явлений отражения, поглощения, поляризации, интерференции и дифракции света проявляющихся в результате его взаимодействия с контролируемым объектом при получении информации о состоянии этого объекта и его параметрах. При изготовлении изделий микроэлектроники применяются различные материалы (металлы, полупроводники, диэлектрики), которые по разному взаимодействуют с оптическим излучением. Это взаимодействие определяется свойствами материалов, их геометрией, внешними условиями, а также параметрами оптического излучения.

По способам получения информации об объекте оптические методы НК разделяются на визуальные и фотоэлектрические. По физическим методам, с помощью которых извлекается информация о контролируемом объекте, оптический НК можно разделяют на следующие основные виды: микроскопия, интерферометрия, спектрометрия и эллипсометрия.

Рис. 1. Оптический диапазон спектра

Рис. 2. Взаимодействие света с контролируемым объектом

Теоретические основы оптических методов НК

Световые колебания, как и любые другие электромагнитные колебания, характеризуются волновыми и корпускулярными свойствами.

Волновые свойства света. Монохроматический луч света представляется как плоскопараллельная электромагнитная волна с взаимоперпендикулярными направлениями колебаний векторов электрического Eи магнитного H полей. Причём направления их колебаний перпендикулярны направлению распространения волны. Световые колебания характеризуются: частотой=2, длиной волны=c/, фазойt, скоростью распространения v=c/n, где - круговая частота, измеряемая в [рад/с]; - линейная частота, измеряемая в [Гц]; c - скорость распространения электромагнитной волны в вакууме; t - время; n -показатель преломления среды.

Т.к. основные физико-химические явления, связанные с проявлением световых колебаний, обязаны электрической составляющей Eсветовых колебаний, то обычно свет рассматривают, как электрическую волну, которая описывается следующим уравнением

Е= еЕcos(tО- X),

гдеX = 2 (tX -tО) = 2 (x1 -xО)/v = 2nx(t)/c , - сдвиг фазы световых колебаний, характеризующий свойства объекта, с которым взаимодействовала световая волна в процессе его контроля (рис.2);

n = c/v - показатель преломления среды, характеризующий степень замедления распространения световой волны в анализируемой среде по сравнению с вакуумом.

В общем виде комплексный показатель преломления выражается как

= n - ik , где

k - коэффициент экстинкции, характеризующий поглощение света в веществе,

n = ()1/2 - действительный коэффициент преломления вещества, определяемый диэлектрической и магнитной проницаемостями этого вещества.

Таким образом, если проанализировать изменение фазы световых колебаний после прохождения луча света через исследуемый объект или после отражения от него, то можно получить достаточно большой объём информации о свойствах этого объекта. На этом и основан принцип действия большинства оптических методов НК. Кроме фазы информацию об объекте контроля несёт также степень изменения поляризации ( е-вектор поляризации) и степень поглощения света (амплитуда E).

Фазовый анализ провзаимодействующего с объектом светового пучка можно осуществить, используя такие проявления волновых свойств света, как дифракция и интерференция.

Для обычного некогерентного света, при наложении двух потоков происходит алгебраическое суммирование интенсивностей, пропорциональных квадрату амплитуд колебаний

E2 = E21 + E22 .

При наложении двух когерентных световых потоков происходит их интерференция - явление возникновения стоячих световых волн, характеризуемых наличием пучностей, в которых происходит усиление световых колебаний, и впадин, в которых наблюдается снижение амплитуды световых колебаний. При этом

E2 = E21 + E22 + 2E1 E2 cos(1-2) .

При изменении разности фаз1 -2 от 0 до амплитуда световых колебаний изменяется от .

Явление интерференции используется в интерферометрах, спектральных приборах, в голографических методах контроля.

Исследование оптических и электрических характеристик объекта по степени изменения поляризации анализирующего светового потока осуществляется в эллипсометрах.

Явление поглощения объясняется корпускулярными свойствами света. Впервые они были обнаружены при открытии фотоэффекта.

Исходя из классической волновой теории света предполагалось, что энергия фотоэлектронов, эмиттируемых металлической пластиной (цезиевой или медной), освещаемой пучком света, должна увеличиваться с увеличением интенсивности светового пучка и, наоборот, должна уменьшаться с ростом частоты световых колебаний (из-за инерционности электронов, которые обладают конечной массой покоя). Однако, как оказалось на самом деле, с ростом интенсивности света энергия фотоэлектронов не изменяется, а с ростом частоты световых колебаний она наоборот увеличивается. Правда с ростом интенсивности света увеличивается общее число фотоэлектронов.

Объясняя это явление, а также явление теплового излучения, Планк предположил, что свет поглощается и излучается некоторыми порциями и что вся энергия, излучаемая телом, равна целому числуэтих порций - квантов с энергией, равной W = h , где h - постоянная Планка.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 155
Бесплатно скачать Реферат: Оптические методы НК. Прямой контроль в оптической (световой) микроскопии