Реферат: Оптика атмосферы
Атмосферная оптика – раздел физики атмосферы, посвященный изучению рассеяния, поглощения, преломления, отражения и дифракции ультрафиолетового, видимого и инфракрасного излучения в атмосферах Земли и планет. Атмосферная оптика — одна из древнейших наук, занимающая видное место в процессе в процессе познания природы; с ней связано открытие явления рассеяния излучения, доказательство молекулярного строения атмосферы и справедливость кинетической теории газов, определение числа Авогадро и многие другие открытия. Как и для многих других областей науки, в ее основе стояли два вопроса, которые всякий раз возникают при наблюдении какого-либо эффекта или явления, природа которого неизвестна. Первый вопрос можно сформулировать как «Что мы видим?», то есть, какова природа явления. Второй вопрос, возникающий чуть позже — «Что нового об окружающем нас мире мы можем узнать, наблюдая это явление?», или какие именно наблюдения мы должны проводить для того, что бы после раскрытия природы явления максимально расширить информацию об его источниках, и до каких пределов это удастся сделать.
Основным наблюдаемым явлением, поставившим эти вопросы перед учеными, был яркий фон дневного и сумеречного неба. С улучшением условий наблюдения и прозрачности атмосферы сюда же входил и Вопрос о природе фона неба интересовал арабских ученых еще на рубеже первого и второго тысячелетия, однако он не был разрешен в течение многих веков. Лишь в XIXвеке, с открытием явления рассеяния света, удалось ответить на этот вопрос. Многообразие оптических явлений, наблюдаемых на небе. Особенно во время сумерек, указывало на сложность строения атмосферы и широкие возможности по ее исследованию на различных высотах. Исследования ночного неба еще более расширяло круг затрагиваемых вопросов, теперь уже для верхних слоев атмосферы.
До начала ХХ века основным содержанием атмосферной оптики являлось чисто феноменологическое изучение связей между оптическими и метеорологическими явлениями в атмосфере, а методы наблюдения были лишь визуальными.
В XX веке, с появлением приборов, позволяющих регистрировать наблюдаемые явления, круг проблем, в решении которых важная роль была отведена атмосферной оптике, стал охватывать вопросы атмосферного аэрозоля, малых газовых примесей, в том числе озона , температурного распределения и состава верхней атмосферы, механизмов образования эмиссий ночного неба, слоев натрия и калия, серебристых облаков. Для решения указанных задач необходимо использовать спектральные и поляризационные данные, существенно увеличивающие объем информации.
Актуальной задачей атмосферной оптики является экспериментальное исследование оптических характеристик атмосферы на различных высотах, в различных участках спектра и при различных геофизических условиях. Для этого проводятся как наземные исследования, так и исследования при помощи летательных аппаратов. Суть наземных измерений сводилась главным образом к исследованию оптических свойств приземного слоя атмосферы. Однако, в последнее были разработаны новые методы (прожекторные, лазерные, сумеречные), позволяющие производить с земной поверхности оптическое зондирование более высоких слоев атмосферы.
В данном реферате нами будет проведен обзор спектральных и поляризационных методов исследования атмосферы.
1. Спектральные исследования атмосферы Земли.
Само понятие «атмосферная оптика» указывает на то, что данная наука предполагает теоретический или экспериментальный анализ излучения, приходящего от атмосферы Земли. Будучи достаточно холодной, атмосфера практически не излучает в видимой области спектра самостоятельно. Исключение составляют лишь эмиссии ночного неба, излучение которых можно выделить в первый раздел атмосферной оптики.
Сильнее всего собственное излучение атмосферы Земли проявляет себя в виде полярных сияний. Спектр полярных сияний состоит из ряда линий, главными из которых являются линия нейтрального атомарного кислорода 5577 ангстрем и триплет этого же элемента 6300, 6363 и 6392 ангстрем, преобладание которых придает полярному сиянию соответственно зеленый или красный цвет (третья линия в триплете достаточно слабая, и он фактически наблюдается как дублет). Все эти линии запрещенные и могут образоваться только в разреженной среде, что имеет место в верхней атмосфере. Источником возбуждения линий полярного сияния являются энергичные частицы солнечного ветра, влетающие в магнитосферу Земли и достигающие атмосферы вблизи магнитных полюсов нашей планеты. Исследования полярных сияний позволяют изучить физические условия в верхней атмосфере Земли и в ее магнитосфере [14].
Природа полярных сияний была описана многими учеными. Так, например, у Хргиана [26] полярные сияния описаны в виде пучков лучей, выходящих из одной точки неба (так называемая корона), либо параллельных лучей, образующих как бы светящиеся занавеси на небе. Так же автором дано объяснение цвета сияний, основанное на переходах атомов частиц из одного квантового состояния в другое.
Существует и другой механизм возбуждения эмиссионных линий ночного неба. Он во многом противоположен полярным сияниям, поскольку наблюдается преимущественно в тропических широтах, а энергия поступает от источников в нижних слоях атмосферы — мощных тропических циклонов. Акустико-гравитационные волны распространяются в верхние разреженные слои атмосферы, где их амплитуда существенно увеличивается. В это время наблюдается повышенная интенсивность эмиссий ночного неба в линии кислорода 5577 ангстрем, желтом дублете натрия (5890 и 5896 ангстрем), а также в полосах гидроокисла ОН в ближайшей инфракрасной области спектра. Фон неба в этих линиях часто имеет четкую волнообразную структуру [11]. Высоты слоев ОН, натрия и атомарного кислорода оказались равными 85, 90 и 95 км, что близко к высоте последнего температурного минимума в атмосфере. Измерения параметров волн дают возможность локализовать их источник в тропосфере, исследовать механизм их переноса. Более того, акустико-гравитационные волны и наблюдаемая волновая структура эмиссии ночного неба могут служить предвестниками атмосферных тайфунов и. возможно, землетрясений, что значительно увеличило интерес к данному разделу оптики.
Линии кислорода.
Запрещенные линии атомарного кислорода являются наиболее удобными для наблюдений, так как они достаточно ярки и легко выделяются в спектре фона как во время полярных сияний или повышенной волновой активности, так и в «спокойном» состоянии фона.
Определение ширины линии 5577 ангстрем в спектре вечернего неба было предпринято Бэбкок [1], но возможности аппаратуры были таковы, что позволяли оценить лишь верхний предел и, следовательно, температуру слоя эмиссии. Позднее, в 1955 году Д. Варк и Дж. Стоун [15] предложили более точный метод. Интерферометр Фабри-Перо с апертурой 45 мм был помещен перед фотографической щелью в 7 фокусе. Весь инструмент, включая фотографическую пластину, был в воздухонепроницаемом контейнере с тщательно регулируемой температурой. Использовались фотографическая пластина 103a-GEastman и фильтр Gb-7.
Пластины интерферометра были покрыты многослойными диэлектрическими пленками. Первоначально пленки состояли из 9 слоев, из которых пять были из цинкового сульфида и четыре из криолита, который давал коэффициент отражения в данном диапазоне длин волн порядка 98%. С этими пленками максимальный коэффициент пропускания интерферометра был очень низким. Причиной этому служило то, что пластины были плоскими только в пределах . Согласно теории, предложенной Чабаллем [2], пленки более низкого коэффициента отражения дают более высокое максимальное значение коэффициента пропускания без существенных потерь интенсивности. Поэтому позднее в этом эксперименте девятислойная пленка была заменена на пятислойную, которая давала коэффициент отражения 87% и позволяла получать хорошие фотографии уже после 5 часов подвергания ее ночному небу.
В результате этих наблюдений авторами были определены средняя температура слоя атомарного кислорода и его высота, которые хорошо согласовались со значениями, полученными другими методами. [10]
Линии натрия.
Проведение наблюдений в линиях натрия могут быть затруднены наличием этих же линий в спектре засветки неба от крупных городов, а также (уже как линии поглощения) в спектре Солнца и, следовательно, компонент фона ночного неба, связанных с рассеянием солнечного излучения.
Только в течение нескольких минут линии натрия становятся более яркими, чем соседние в непрерывном спектре, образующегося из прямого солнечного света, рассеянного атмосферой. В это время яркость линий сильно возрастает и становится равной их яркости ночного свечения.
Процесс протекания сумеречных вспышек линий натрия был описан в 1971 году А. Петерсоном и Л. Кейффабер [9]. В начале ими был оговорен тот факт, что атомы натрия ограничены высоко в атмосфере относительно узким слоем. Максимальная концентрация в слое примерной толщины 20 км приходится на высоту 90 км. При заходе Солнца тень Земли ложится на этот слой, но эффективная высота тени повышается атмосферным озоном, максимальная концентрация которого приходится на высоту 21 км, но эффективное поглощение продолжается на высоте в 30 – 40 км выше поверхности. Кроме того, наблюдается очень сильное поглощение в ультрафиолетовой области спектра от 2000 до 3000 ангстрем: озон поглощает спектральную область около 6000 ангстрем, действуя при этом как светонепроницаемый барьер для фотонов, способных возбудить дублет натрия.
Пока солнце не ниже 8˚ над горизонтом, все излучения атмосферы разбиваются ярким рассеянным солнечным светом, оставляя видными только линии поглощений, происходящих на солнце. По мере углубления сумерек, только высокие и очень высокие слои атмосферы освещаются снизу. Когда склонение солнца приближается к 10˚, линия поглощения натрия внезапно исчезает. Дублет 5893 ангстрема становится полностью заполненным фотонами с той же самой длиной волны рассеянного атомами атмосферного натрия.
Подобная вспышка была получена 27 апреля 1970 года на открытом плато несколько миль западнее Альбукерке на высоте примерно 6000 футов над уровнем моря. Хотя город был ниже горизонта наблюдателей, его ртутные уличные фонари все равно производили сильное загрязнение, включая яркую линию 4358 ангстрем.
В первом представлении типичный солнечный спектр очевиден, но очень сверхвыставлен, кроме промежутка от 5300 до 6300 ангстрем, где уже представлено поглощение озона, уменьшающее его интенсивность. Дублет натрия появляется как поглотительная линия, но она исчезает уже при 10˚ солнечного склонения.
Только 6 минут спустя линия натрия появляется заметно в эмиссии (11˚) и на 12˚и 13˚ это самая яркая линия в спектре сумерек. На негативах, полученных Петерсоном и Кейффабер красная линия кислорода 6300 ангстрем появляется на 11˚, зеленая линия кислорода (5577 ангстрем) — на 12˚.
В то время проводимый эксперимент был достаточно нов. В ходе его проведения были получены три важных результата: высота слоя испускания, его толщина и число атомов натрия, содержащихся в столбе испускающего слоя с поперечным сечением равным 1.
Так же был выделен тот факт, что важную роль в проведении эксперимента играло время экспозиции.
Линии водорода и гидроксила ОН.
Поскольку небольшая примесь водорода может попасть в атмосферу с промышленными газами, с начала ХХ века считали, что в верхней атмосфере он практически отсутствует. В частности, до 30-х годов ХХ века полагали, то в спектрах полярных сияний либо вовсе нет линий водорода, либо они очень слабы. В 1948 — 1951 гг. В.И. Красовский получил много фотографий инфракрасного спектра (в области 7500 — 11000 ангстрем) свечения ночного неба. В 1950 году С.Ф. Родионов и Л.М. Фишкова обнаружили, что интенсивность инфракрасного излучения ночного неба гораздо больше, чем его «зеленого» свечения с ангстрем. В том же году И.С. Шкловский, а затем Дюфэй показали, что ряд полос в спектрах, полученных В.И. Красовским, с длинами волн 7250 – 7400, 7470 – 7600, 7700 – 7830, … 10217 и 10827 ангстрем являются вращательно-колебательными полосами спектра гидроксила ОН. Так было открыто в верхней атмосфере это новое соединение, отсутствующее в нижней атмосфере. Шкловский предположил, что оно возникает при столкновении молекул озона и атома водорода. При этом должно выделяться 6,11 эВ энергии — количество, достаточное для возбуждения молекулы ОН. Последняя затем испускает эту энергию в виде квантов света. Высота, на которой находится ОН, по данным различных авторов, равна 75 – 80 км. В спектрах полярных сияний, расположенных выше 100 км, полосы ОН отсутствуют. Общее число молекул ОН в вертикальном столбе атмосферы сечением 1 см2 оценивается в 1011 – 1012 .
Ученые, которые долгое время не могли обнаружить линий водорода в спектрах полярных сияний, полагали, что, вероятно, там нет источников энергии для возбуждения его атомов, требующего 10,6 эВ. Следы водородных линий в спектрах полярных сияний впервые были найдены 18 октября 1939 года. Затем они наблюдались 23 февраля 1950 года в Норвегии, когда сияние было очень ярким и продолжительным и Л. Вегард мог снять его спектр с огромной экспозицией — 11 часов. В спектре при этом были обнаружены многочисленные полосы молекулярного кислорода О2 между ангстрем и ангстрем, обычно отсутствующие в спектрах сияний выше 100 км. Вероятно, высота светящегося слоя была меньше 100 км. Самое важное, что в спектре имелась слабая размытая линия водорода с ангстрем, значительно смещенная к фиолетовому концу спектра. Это смещение — явление Допплера — говорило о быстром движении излучающих атомов водорода к наблюдателю. Позднее в полярном сиянии 18 – 20 августа 1950 года наблюдалась и красная линия водорода с ангстрема, также расширенная и смещенная. Подробные наблюдения А.Я. Сухоиваненко [25] в бухте Тикси в период МГГ[1] показали, что светящиеся атомы водорода приближаются к Земле со средней скоростью 3000 км/с. «Крылья» уширенной линии показывают, что скорости приближения достигают 3400 км/с, а скорости удаления — 1000 км/с. Было выдвинуто предположение, что солнечные (или космические) протоны движутся к Земле по путям, спирально закручивающимся около магнитных силовых линий. Сталкиваясь с другими частицами и захватывая при этом «чужой» электрон, они превращаются в нейтральные атомы водорода, сохраняющие при этом компоненту скорости, направленную к Земле. Эти столкновения создают одновременно и значительный «разброс» скоростей атомов Н. Так объясняется и смещение и уширение линий и .
Линии эмиссии вечернего и ночного неба, к сожалению, доставляют немало неприятностей астрономам. Они наблюдаются во многих спектрах звезд, галактик, туманностей, и если время экспозиции достаточно велико, порядочно засоряют исследуемые спектры. Однако, есть также положительный аспект. Так как они зарегистрированы в каждом спектре, они могут быть использованы при калибровке длины волны или определении нулевой точки, которая фиксируется автоматически в течение того же самого времени экспозиции, с телескопом и спектрографом в той же самой ориентации, и т.д. Для низкодисперсионных спектров галактик, зафиксированных в Обсерватории Лик (США), многие наблюдатели используют линии неба, чтобы установить начальную длину волны каждой экспозиции. Они, таким образом, обеспечивают возможность измерения точных радиальных скоростей или красных смещений, не беря отнимающие много времени спектры сравнения прежде и/или после каждого спектра галактик, не перемещая телескоп. Остербрук и Мартель [5] издали атлас и список точных длин волны, в особенности для многочисленных ОН линий. Многие наблюдатели нашли этот список полезным для обнаружения, идентификации и использования линий неба на их спектрах.
Эшелле – спектрограф с высоким разрешением (HIRES[2] ) на 10 – метровом телескопе обсерватории Кек оказывается, быстрым, надежным инструментом (Вогт и другие.[13]). Некоторые наблюдатели использовали его, чтобы наблюдать галактики, так как каждый порядок спектра эшелле включает только ограниченный диапазон длины волны. Многочисленные линии неба могут быть полезны для того, чтобы обеспечить начальную точку длины волны или регистрацию каждого порядка. Атлас низкой дисперсии не очень хорошо удовлетворяет для использования со спектрами высокого разрешения. В 1994 году теми же авторами был составлен новый атлас спектров высокого разрешения, полученных с помощью эшелле – спектрографа, в который наряду с линиями кислорода вошли и линии гидроксила ОН [6].
Атмосферный озон.
Озон О3 играет важную роль в атмосферных процессах, хотя и содержится в воздухе в ничтожном количестве — менее по объему. Еще в 1879 – 1880 гг. Гартли обнаружил, что спектры Солнца и звезд «обрезаны» с ультрафиолетового конца, примерно с ангстрем. В 1903 году Мейер и подробнее в 1913 году Фабри и Бюиссон изучили в лаборатории поглощение озона в этой части спектра. В 1921 году Фабри и Бюиссон доказали, что поглощающим веществом в земной атмосфере является действительно озон, слой которого расположен в атмосфере выше 20 км.
Так как поглощение ультрафиолетовой радиации озоном велико, большая часть ее (около 1,5% солнечной энергии) поглощается уже в самой верхней части слоя озона, вследствие этого на высоте 40 – 55 км воздух очень теплый. Здесь, по наблюдениям Фаси во время МГГ, температура может достигать 44˚.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--