Реферат: Оптимизация показателей

Для вирішення задачі лінейного програмування, потрібно записати вихідну задачу в формі задачі лінейного програмування, а потім застосовувати симплекс-метод . Основною задачею лінійного програмування – задача для якої:

1. потрібно визначити максимальне значення ф-ції

2. всі обмеження записані в вигляді рівностей

3. для всіх змінних виконується умова невідємності

Якщо обмеження має вид нерівності зі знаком >=, то шляхом множення його на (-1) переходять до нерівності зі знаком <=.

Від обмежень нерівностей необхідно перейти до обмежень рівностей. Такий перехід виконується шляхом введення в ліву частину кожної нерівності додаткових незалежних невідємних змінних. При цьому знак нерівності міняють на знак рівності.

Вихідне завдання:

F = 5х1 +6х2 max

-10x1 - 6x2 ³-60

-4x1 + 9x2 £ 36

4x1 - 2x2 £ 8

x1 ,x2 ³0 x1 ,x2 -цілі числа

Основна задача:

F = 5х1 +6х2 max

10x1 + 6x2 + х3 =60

-4x1 + 9x24 = 36

4x1 - 2x25 = 8

x1 ,x2 ,x3 ,x4 ,x5 ³0 x1 ,x2 -цілі числа

Кожній змінній в системі відповідає свій вектор – стовпець. Вектор – стовпець Ро складається із значень правих частин рівнянь і називається вектором вільних членів.

Виходячи з основного завдання, складаєм симплекс-таблицю.

№ рядка

Базис

Сб

Р0

Р1

Р2

Р3

Р4

Р5

1

Р3

0

60

10

6

1

0

0

2

Р4

0

36

-4

9

0

1

0

3

Р5

0

8

4

-2

0

0

1

4

F

0

-5

-6

0

0

0

Таблиця № 1 – Вихідна симплекс-таблиця


Знаходження оптимального розвязку ЗЛП за допмогою с-м включає слідуючі етапи:

1. За вихідною с-т знаходять опорне рішення

Кожній с-т відповідає своє опорне рішення. Воно може бути представлене у вигляди вектора Х Розмірніст вектора дорівнює кількості змінних в основній задачі.

Кожній змінній в симплекс таблиці відповідає свій вектор. Змінній x1 —вектор Р1 і т.д.

Вектор Р0 складений із вільних членів рівнянь. Кожний рядок симплекс-таблиці – рівняння відповідно. Четвертий рядок—рядок оцінок в ньому записують коефіцієнти при змінних в цільовій ф-ції з протилежним знаком і визначається розв’язуємий стовпець, беруться модулі від’ємних чисел з цієї строки. В векторі Х кожній змінній відповідає певна компонента. Змінній х1 перша компонента змінній х2 —друга. Значення компонент визначають слідуючим чином, якщо вектор базисний, то компонента дорівнює значенню компоненти вектора стовпця Р0 з того рідка де в базисі стоїть 1.

У вихідній таблиці вектори Р1 , Р2 – не базісні, тобто в Х – перша и друга компоненти = 0

Х=(0;0;60;36;8)

2. Зясовують, мається хочаб одне відємне значення врядку оцінок ( рядок 4) Якщо нема – то план оптимальний, якщо є – треба переходити до новій с-т.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 550
Бесплатно скачать Реферат: Оптимизация показателей