Реферат: Оптимизационные методы решения экономических задач
Описанный далее метод представляет собой метод достижения цели Гембики. Данный метод включает в себя выражение для множества намерений разработчика , которое связано с множеством целей . Такая формулировка задачи допускает, что цели могут быть или недо- или передостижимыми, и что дает разработчику возможность относительно точно выразить исходные намерения. Относительная степень недо- или передостижимости поставленных намерений контролируется посредством вектора взвешенных коэффициентов и может быть представлена как стандартная задача оптимизации с помощью следующей формулировки
При условии, что
Член вносит в данную задачу элемент ослабления, что, иначе говоря, обозначает жесткость заданного намерения. Весовой вектор w дает исследователю возможность достаточно точно выразить меру взаимосвязи между двумя целями. Например, установка весового вектора w как равного исходному намерению указывает на то, что достигнут тот же самый процент недо- или передостижимости цели . Посредством установки в ноль отдельного весового коэффициента (т.е. ) можно внести жесткие ограничения в поставленную задачу. Метод достижения цели обеспечивает подходящую интуитивную интерпретацию поставленной исследовательской задачи и которая, в свою очередь, является вполне разрешимой с помощью стандартных процедур оптимизации.
3 Гладкая оптимизация.
Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Основная идея метода состоит в переходе от задачи на условный экстремум к задаче отыскания безусловного экстремума некоторой построенной функции Лагранжа. Пусть задана задача НП при ограничениях-равенствах вида
минимизировать
при ограничениях
Предположим, что все функции – дифференцируемы. Введем набор переменных (число которых равняется числу ограничений), которые называются множителями Лагранжа, и составим функцию Лагранжа такого вида:
Справедливо такое утверждение для того чтобы вектор являлся решением задачи при ограничениях необходимо, чтобы существовал такой вектор , что пара векторов удовлетворяла бы системе уравнений
множителей Лагранжа, который состоит из следующих шагов.
Составляют функцию Лагранжа
Находят частные производные
Решают систему уравнений
и отыскивают точки , удовлетворяющие системе.
Найденные точки дальше исследуют на максимум (или минимум).
Седловая точка и задача нелинейного программирования
Рассмотрим функцию Лагранжа
Определение Пара векторов называется седловой точкой функции Лагранжа , если при всех выполняется условие
Неравенство называют неравенством для седловой точки. Очевидно, что в седловой точке выполняется условие
Между понятием седловой точки функции Лагранжа и решением задачи НП существует взаимосвязь, которая устанавливается в следующей теореме.