Реферат: Оптоэлектронные запоминающие устройства
DVD (Digital Versatile Disk – цифровой многоцелевой диск) или первоначально (Digital Video Disk) разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4, 7 до 17 Гб.). Уровень качества звука и изображения хранимого на DVD приближен к студийному качеству. В накопителях DVD используется более узкий луч лазера чем в CD-ROM, поэтому толщина защитного слоя диска была снижена в 2 раза, что привело к появлению двухслойных дисков.Кроме этого могут быть использованы обе стороны диска , таким образом, один диск может иметь четыре рабочих плоскости. Эти диски, как и CD можно использовать только для чтения.
DVD-R и DVD-RAM соответственно записываемый (Recordable) и перезаписываемый (Erasable- ReWritable) являются последними разработками . DVD-R уже имеется в продаже, но его высокая стоимость не позволяет ему стать таким доступным как CD-R или CD-RW.
Стационарные.
Магнитно-оптический накопитель: Принцип физического действия, параметры и характеристики.
Магнитооптические накопители (Magneto-Optical) представляют собой накопитель информации, в основу которого положен магнитный носитель с оптическим управлением. Поверхность магнитооптического диска покрыта сплавом, свойства которого меняются как под воздействием тепла, так и под воздействием магнитного поля. Если нагреть диск сверх некоторой температуры (температуры Кюри), то становится возможным изменение магнитной поляризации посредством небольшого магнитного поля.
Световой импульс сфокусированного лазера быстро разогревает магнитный материал в одно крошечной точке практически до температуры Кюри, а записывающая головка генерирует поле, достаточное для изменения ориентации намагниченности данной точки. Когда точка остывает, внесенные изменения блокируются высокой коэрцитивной силой.
Чтение диска основано на способности магнитной среды изменять поляризацию света. Возвращенный луч проходит через линейный поляризатор. Он пропускает фотоны, отразившиеся от участка с одной ориентацией, и не пропускает практически ни одного фотона отразившегося от участка с противоположенной ориентацией намагниченности. Отмечая скачки в амплитуде отраженного луча можно считывать ориентацию магнитного поля на поверхности среды.
МО диски могут быть односторонними 3, 5” емкости 128, 230, и 640 Мб. Двухсторонними 5, 25” емкостью 600 Мб. – 2, 6 Гб. 2, 5” диски Mini Disk Data фирмы Sony, созданы специально для аудиоустройств, имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3, 5 – 7 Гб. Большое распространение получили при построении оптических библиотек.
Голографическое запоминающее устройство: Теория и принцип физического действия.
Оптоэлектронные устройства находят все более широкое применение в вычислительной технике. Наиболее перспективными в настоящее время считаются так называемые голографические устройства памяти ЭВМ, основанные на принципах голографии — нового, быстро развивающегося направления оптоэлектроники.
Прежде чем познакомиться с работой оптического запоминающего устройства (ЗУ), необходимо хотя бы в общих чертах рассмотреть сущность голографического отображения информации.
В 1947 г. английский ученый Д. Габор разработал метод записи и восстановления пространственной структуры световой волны (волнового фронта), который получил название голографии.
Известно, что обычное фотографическое изображение того или иного объекта не дает представления о его объемных свойствах. Это происходит потому, что фотопластинка реагирует только на среднюю интенсивность света при экспонировании и не способна реагировать на фазу световой волны, которая зависит от расстояния между объектом и фотопластинкой. Д. Габор обратил внимание на то, что при фотографировании всегда приходится осуществлять наводку на резкость, иначе изображение будет нечетким. Между тем, независимо от наводки на резкость, с лучами света, образующими изображение на фотопластинке, никаких изменений на участке между объектом и фотопластинкой не происходит. В связи с этим Д. Габор предположил, что изображение объекта присутствует в скрытом от наблюдателя виде в любой
Рис. 1 Ввод излучения в световод:
а—безлинзовая система (1—кристалл световода; активная излучающая область; 3—световод: 4— оптический клей); б—с помощью фокусирующей линзы (1—излучатель; 2 — фокусирующий элемент; 3 - световод)
плоскости между объектом и фотопластинкой. Иначе говоря, изображение в том или ином виде содержится в самой структуре световой волны, распространяющейся от объекта к объективу фотоаппарата. Именно эта волна несет наиболее полную информацию об объекте, причем эта информация оказывается зашифрованной в амплитудных и фазовых изменениях волнового фронта. Таким образом, для получения необходимой информации об объекте, в том числе и о его объеме, достаточно зафиксировать (записать) пространственную структуру световой волны, а затем, используя эту запись, восстановить изображение объекта. Этот двухступенчатый процесс записи и восстановления волнового фронта, несущего информацию об объекте, и называется голографией, а зафиксированная пространственная структура световой волны — голограммой.
Каким же образом можно зафиксировать на фотопластинке ч амплитуду, и фазу световой волны? Д. Габор предложил использовать для записи голограммы явление интерференции двух когерентных световых лучей, а для восстановления изображения с голограммы — явление дифракции света.
Как известно, при интерференции волны от двух одинаковых источников света, расположенных на некотором расстоянии друг от друга, в любой точке пространства будут накладываться друг на друга, причем в некоторых точках произойдет удвоение амплитуды, а в некоторых амплитуда колебаний окажется равной нулю. Это дает основание утверждать, что в интерференционной картине содержится определенная фазовая информация, позволяющая определить расстояние от какого-то места интерференционной картины до источника (или источников) изучения. Величина максимумов распределения поля в интерференционной картине позволяет оценить интенсивность излучения, а соотношение между максимумами и минимумами — когерентность. Следовательно, в интерференционной картине (голограмме) записана вся возможная информация об излучении источников.
Когерентный луч света, который освещает объект и рассеивается им, называют сигнальным; луч, создающий когерентный фон — опорным.
Одна из важнейших особенностей голографии — возможность записи большого числа голограмм на одной и той же фотопластинке при использовании по-разному направленных опорных лучей.
Если для записи голограммы необходимы два источника когерентного изучения, то для восстановления изображения объекта голограмму достаточно осветить только одним опорным лучом. Для извлечения информации из голограммы обычно пользуются той же установкой, что и для голографирования. Голограмма устанавливается на то же место, где находилась фотопластинка при изготовлении голограммы, и облучается лучом лазера.
За счет явления дифракции луч света после прохождения голограммы разделяется на три составляющих: одна из них проходит через голограмму без изменения направления (так называемый луч нулевого дифракционного порядка); два других отклоняются от первоначального направления на некоторый угол, зависящий от длины волны и шага интерференционных полос, зафиксированных на голограмме (лучи первого и второго дифракционного порядков). Эти лучи содержат всю информацию о голограмме, а наблюдатель, фиксирующий их, получает наиболее полное представление о форме и объеме соответствующего объекта.
.'Рассмотрим теперь возможности записи информации в голографических ЗУ вычислительных машин (рис. 2)
.Объектом записи в вычислительной технике обычно является. ‘Двумерная матрица двоичных знаков. При записи информации луч лазера с помощью системы зеркал разделится на два: сигнальный, проходящий через запоминаемый объект, и опорный. Направление опорного луча управляется дефлектором — устройством, состоя-
Рис. 2 структурная схема голографического запоминающего устройства (ЗУ)
щим из модулятора поляризации света и лучепреломляющего кристалла. В зависимости от комбинации управляющих напряжений, поступающих на вход модулятора, можно получить множество пространственных положений светового луча. Изменение дефлектором направления опорного луча позволяет последовательно записать необходимое .число голограмм.