Реферат: Органические вещества в водных системах

Гумусовые кислоты в поверхностных водах находятся в растворенном, взвешенном и коллоидном состояниях, соотношения между которыми определяются химическим составом вод, рН, биологической ситуацией в водоеме и другими факторами.

Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей — гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульвокислот.

Гумусовые кислоты в значительной степени влияют на органолептические свойства воды, создавая неприятный вкус и запах, затрудняют дезинфекцию и получение особо чистой воды, ускоряют коррозию металлов. Они оказывают влияние также на состояние и устойчивость карбонатной системы, ионные и фазовые равновесия и распределение миграционных форм микроэлементов. Повышенное содержание гумусовых кислот может оказывать отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в водоеме, идущего на их окисление, и их разрушающего влияния на устойчивость витаминов. В то же время при разложении гумусовых кислот образуется значительное количество ценных для водных организмов продуктов, а их органоминеральные комплексы представляют наиболее легко усваиваемую форму питания растений микроэлементами.

Почвенные кислоты: гуминовые (в щелочной среде) и особенно хорошо растворимые фульвокислоты играют наибольшую роль в миграции тяжелых металлов.

Гуминовые кислоты

Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300-1500.

Содержание гуминовых кислот в поверхностных водах обычно составляет десятки и сотни микрограммов в 1 дм3 по углероду, достигая нескольких миллиграммов в 1 дм3 в природных водах лесных и болотистых местностей, придавая им характерный бурый цвет. В воде многих рек гуминовые кислоты не обнаруживаются.

Фульвокислоты

Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами.

Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Содержание фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более.

Азот органический

Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения).

Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток. Концентрация этих соединений определяется биомассой гидробионтов и скоростью указанных процессов. Другим важным источником азотсодержащих органических веществ являются прижизненные их выделения водными организмами. К числу существенных источников азотсодержащих соединений относятся также атмосферные осадки, в которых концентрация азотсодержащих органических веществ близка к наблюдающейся в поверхностных водах. Значительное повышение концентрации этих соединений нередко связано с поступлением в водные объекты промышленных, сельскохозяйственных и хозяйственно-бытовых сточных вод.

На долю органического азота приходится 50-75% общего растворенного в воде азота. Концентрация органического азота подвержена значительным сезонным изменениям с общей тенденцией к увеличению в вегетационный период (1,5-2,0 мг/дм3 ) и уменьшению в период ледостава (0,2-0,5 мг/дм3 ). Распределение органического азота по глубине неравномерно — повышенная концентрация наблюдается, как правило, в зоне фотосинтеза и в придонных слоях воды.

Мочевина

Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10-50% суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков. Значительное влияние на концентрацию мочевины оказывают внеорганизменные ферментативные процессы. Под действием ферментов происходит распад мононуклеотидов отмерших организмов с образованием пуриновых и пиримидиновых оснований, которые в свою очередь распадаются за счет микробиологических процессов до мочевины и аммиака. Под действием специфического фермента (уреазы) мочевина распадается до аммонийного иона и потребляется водными растительными организмами.

Повышение концентрации мочевины может указывать на загрязнение водного объекта сельскохозяйственными и хозяйственно-бытовыми сточными водами. Оно обычно сопровождается активизацией процессов утилизации мочевины водными организмами и потреблением кислорода, приводящего к ухудшению кислородного режима.

В речных незагрязненных водах концентрация мочевины колеблется в пределах 60-300 мкг/дм3 , или в пересчете на азот 30-150 мкг/дм3 , в водохранилищах и озерах — от 40 до 250 мкг/дм3 . Наиболее высокая концентрация ее обнаруживается в пробах, отобранных в летне-осенний период (июль-сентябрь).
ПДКвр — 80 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Амины

К основным источникам образования и поступления в природные воды аминов следует отнести:

· декарбоксилирование при распаде белковых веществ под воздействием декарбоксилаз бактерий и грибов и аминирование;

· водоросли;

· атмосферные осадки;

· сточные воды анилино-красочных предприятий.

Амины присутствуют преимущественно в растворенном и отчасти в сорбированном состоянии. С некоторыми металлами они могут образовывать довольно устойчивые комплексные соединения.

Концентрация аминов в воде рек, водохранилищ, озер, атмосферных осадках колеблется в пределах 10 — 200 мкг/дм3 . Более низкое содержание характерно для малопродуктивных водных объектов.

Амины токсичны. Обычно принято считать, что первичные алифатические амины токсичнее вторичных и третичных, диамины токсичнее моноаминов; изомерные алифатические амины более токсичны, чем алифатические амины нормального строения; моноамины с большей вероятностью обладают гепатотоксичностью, а диамины — нефротоксичностью. Наибольшей токсичностью и потенциальной опасностью среди алифатических аминов характеризуются непредельные амины из-за наиболее выраженной у них способности угнетать активность аминооксидаз.

Амины, присутствуя в водных объектах, отрицательно влияют на органолептические свойства воды, могут усугублять заморные явления.

ПДКв для различных видов аминов — от 0,01 до 170 мг/дм3 .

Анилин

Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом.

В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий.

Анилин обладает способностью окислять гемоглобин в метгемоглобин. <P

ПДКв — 0,1 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,0001 мг/дм3 (лимитирующий показатель вредности — токсикологический).

Уротропин

Гексаметилентетрамин — (CH2 )6 N4

ПДКв — 0,5 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический).

Нитробензол

Нитробензол — бесцветная или зеленовато-желтая маслянистая жидкость с запахом горького миндаля.

Нитробензол токсичен, проникает через кожу, оказывает сильное действие на центральную нервную систему, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин.

ПДКв — 0,2 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,01 мг/дм3 (лимитирующий показатель вредности — токсикологический)

Сера органическая

Метилмеркаптан

Метилмеркаптан является продуктом метаболизма живых клеток. Он также поступает со стоками предприятий целлюлозной промышленности (0,05 — 0,08 мг/дм3 ).

В водном растворе метилмеркаптан является слабой кислотой и частично диссоциирует (степень диссоциации зависит от рН среды). При рН 10,5 50% метилмеркаптана находится в ионной форме, при рН 13 происходит полная диссоциация. Метилмеркаптан стабилен менее 12 часов, образует соли — меркаптиды.

ПДКв — 0,0002 мг/дм3 (лимитирующий показатель вредности — органолептический).

Диметилсульфид

Диметилсульфид выделяется водорослями (Oedogonium, Ulothrix) в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности (0,05 — 0,08 мг/дм3 ).

Концентрация диметилсульфида в морях достигает n·10-5 мг/дм3 (повышенное содержание наблюдается в местах скопления водорослей).

Диметилсульфид не может долго сохраняться в воде водоемов (стабилен от 3 до 15 суток). Он частично подвергается превращениям при участии водорослей и микроорганизмов, а в основном испаряется в воздух.

В концентрациях 1-10 мкг/дм3 диметилсульфид обладает слабой мутагенной активностью.

ПДКв — 0,01 мг/дм3 (лимитирующий показатель вредности — органолептический), ПДКвр — 0,00001 мг/дм3 (лимитирующий показатель вредности —токсикологический).

Диметилдисульфид

К-во Просмотров: 259
Бесплатно скачать Реферат: Органические вещества в водных системах