Реферат: Организация и самоорганизация в живой природе
Молекулярно-генетический уровень биологических структур
Молекулярно-генетический уровень является тем уровнем организации живой материи, на котором совершался переход от атомно-молекулярного уровня неживой материи к макромолекулам живой. Знание этого уровня организации живого необходимо для понимания жизненных явлений, происходящих на всех других уровнях организации жизни. Это уровень функционирования биополимеров, таких как белки, нуклеиновые кислоты, полисахариды и другие важнейшие органические соединения, положившие начало основным процессам жизнедеятельности. На этом уровне организации живой материи элементарными структурными единицами являются гены. Вся наследственная информация у живых организмов заложена в молекулах ДНК (дезоксирибонуклеиновые кислоты). Реализация этой информации связана с участием молекул РНК (рибонуклеиновые кислоты). С молекулярными структурами связаны хранение, изменение и реализация наследственной информации, то есть передача ее из поколения в поколение. Поэтому этот уровень и называют молекулярно-генетическим. РНК и ДНК были выделены из ядер клеток и поэтому получили название нуклеиновых, то есть ядерных, кислот.
В этих кислотах имеются углеводные компоненты: Д-дезоксирибоза в ДНК и Д-рибоза в РНК, отсюда и название этих нуклеиновых кислот.
Роль нуклеиновых кислот в хранении и передаче наследственности, а также участие их в синтезе белка и обмене веществ были окончательно выяснены лишь в середине XX столетия. В 1953 г. американскими учеными Д. Уотсоном и Ф. Криком была предложена и экспериментально подтверждена гипотеза о структуре молекулы ДНК как материального носителя генетической информации. В 1960-е гг. французскими учеными Ж. Моно и Ф. Жакобом была решена одна из главных проблем генной активности, которая объясняла фундаментальную особенность функционирования живой природы на молекулярном уровне.
На молекулярно-генетическом уровне важнейшей задачей современной биологии является исследование механизмов передачи генной информации, наследственности, а также изменчивости.
Одним из важнейших механизмов изменчивости на молекулярном уровне является механизм мутации генов, то есть их непосредственное преобразование под воздействием внешних факторов, вызывающих мутации (появление мутагенов), это – вирусы, радиация, токсические химические соединения.
Механизмом изменчивости может быть и рекомбинация генов, то есть создание новых их комбинаций. Этот процесс свойствен половому размножению у высших организмов. При нем не происходит изменения общего объема генетической информации. Этот механизм называется классическим.
В других так называемых неклассических случаях рекомбинация может сопровождаться увеличением информации генома клетки. В этом случае фрагменты хромосомы клетки-донора включаются в хромосому принимающей клетки. Они могут оставаться в скрытом, латентном, состоянии некоторое время, а также соединяться с принимающей клеткой (клеткой-реципиентом), когда под действием внешних факторов они становятся активными.
Клеточный уровень
Любой живой организм состоит из клеток. Клетка является элементарной самостоятельной единицей не только строения, но и функционирования живого организма. Она представляет собой мельчайшую элементарную живую систему и является основой жизнедеятельности и воспроизводства всех живых организмов.
В клетке как микроносителе жизни заключена такая генетическая информация, которая вполне достаточна для производства всего организма. На клеточном уровне идут процессы обмена веществ, процессы передачи и переработки информации и превращения веществ и энергии. Поэтому элементарные явления на клеточном уровне создают энергетическую и вещественную основу жизни на других уровнях живой материи.
Исследование клетки стало возможным благодаря изобретению микроскопа в XVII в. Впервые клетка была описана английским естествоиспытателем Р. Гуком.
Клетки всех живых организмов сходны по своему строению и составу вещества. Всеми весьма многообразными и сложными процессами в клетке управляет особая структура – ядро. Ядро хранит и воспроизводит генетическую информацию, координирует и регулирует процессы обмена веществ в клетке, а также ее воспроизводство путем деления.
В начале XIX столетия было описано клеточное ядро, что послужило значительным толчком в развитии теории клетки. Клеточная теория явилась важнейшим событием в биологии XIX в. Именно она стала фундаментом для развития физиологии, эмбриологии, теории эволюции. Это явилось огромным шагом вперед в понимании индивидуального развития живых организмов.
Клетки отличаются большим разнообразием форм, размеров и функций. Их подразделяют на две группы: клетки, не содержащие ядра, то есть безъядерные клетки, представленные одноклеточными организмами – прокариотами, и клетки, имеющие ядро, то есть ядерные клетки, представляющие одноклеточные организмы – эукариоты, а также все многообразие многоклеточных организмов.
По типу питания клетки подразделяются на два вида: автотрофные, которые не нуждаются в органической пище и сами производят органические питательные вещества, используя энергию солнца, углерод, воду и минеральные вещества за счет процесса фотосинтеза (растения); и гетеротрофные, использующие для своего питания готовое органическое вещество.
Онтогенетический (организменный) уровень
Онтогенетический уровень организации живой материи включает в себя как одноклеточные, так и многоклеточные организмы. Это более высокий и сложный комплексный уровень организации живого на Земле. Сам термин «онтогенез» означает индивидуальное развитие организмов, охватывающее все изменения от зарождения до смерти. Термин был впервые введен в биологию немецким биологом Э. Геккелем в 1866 г, который в сформулированном им биологическом законе указывает на то, что каждый отдельный организм в своем индивидуальном развитии повторяет в сокращенной форме историю своего вида.
Основной жизненной единицей на этом уровне является особь, а элементарным явлением – онтогенез. На этом уровне развития живого идет декодирование, а также реализация генетической и наследственной информации, завершающиеся становлением дефинитивной организации. Идет проявление фенотипических признаков, служащих материалом для естественного отбора. На этом уровне создаются особенности как структурные, изучаемые микро– и макроморфологией, так и функциональные, которые составляют предмет изучения физиологии, биофизики и биохимии.
Особенно важное значение для изучения функционирования и развития многоклеточных организмов имеет физиология. Она изучает механизмы действия различных функций живого организма, их связь, регуляцию и адаптацию к внешней среде, а также эволюционное развитие особи. Многоклеточные организмы состоят из тканей и органов.
Ткани представляют собой совокупность клеток и межклеточного вещества. В растениях это образовательная, основная, защитная и проводящая ткань. Ткани у животных – это эпителиальная, мышечная, соединительная и нервная.
Органы – это сравнительно крупные функциональные единицы, объединяющие ткани в определенные физиологические комплексы. Органы в свою очередь входят в состав более крупных единиц, систем организма. Это пищеварительная, нервная, сердечно-сосудистая, дыхательная системы и т. д.
Популяционно-видовой уровень
Это уже надорганизменный уровень, единицей которого является популяция. Именно популяции являются реальными системами, посредством которых существуют виды живых организмов. На этом уровне изменения, возникающие на первых трех уровнях, приводят к существенным эволюционным преобразованиям (микроэволюциям) за счет выработки новых адаптивных норм (признаков) и связанных с ними процессов видообразования.
Популяции являются генетически открытыми системами. Хотя они обладают некоторой относительной изоляцией, все же периодически они имеют возможность обмена генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции. Изменения их генофонда приводят к появлению новых видов. Популяциям свойственна активная и пассивная подвижность, что определяет постоянное перемещение особей. Популяции имеют способность к самостоятельному существованию, однако им свойственно и объединение. Объединяясь на определенной территории, они образуют биоценозы.
Биосферный (биогеоценотический) уровень
Как правило, биоценозы состоят из нескольких популяций и являются компонентами уже более сложной биологической системы – биогеоценоза. Биогеоценоз представляет собой единство живого (биоценоза) и неживого, то есть определенного участка земной поверхности (биотопа). Биогеоценоз – это подвижная, открытая, развивающаяся система. Она постоянно обменивается веществом и энергией с другими биогеоценозами и с окружающим пространством.
Биогеоценоз как целостная саморегулирующаяся система состоит из нескольких подсистем. Это первичные системы – продуценты. Они перерабатывают неживую материю, превращая ее в органическое вещество своих тел (растения, водоросли, некоторые микроорганизмы). Вторичные системы представлены консументами, которые получают энергию за счет органического вещества, синтезированного продуцентами (все травоядные животные), далее идут консументы второго порядка – хищники. Живые организмы после своего отмирания (органический детрит) перерабатываются редуцентами, то есть микроорганизмами, разлагающими остатки органической материи до минеральных веществ. Эти вещества, попадая в почву, вновь используются растениями, и круговорот веществ замыкается. Следовательно, в биогеоценозе происходит круговорот веществ, в котором живые организмы являются главной движущей силой.
Устойчивость и саморегуляция биогеоценозов увеличивается пропорционально разнообразию составляющих его элементов. Выпадение одного или нескольких компонентов биогеоценоза может привести к необратимому нарушению равновесия и к его гибели. Это указывает на тесную взаимосвязь организмов всех уровней в биогеоценозе посредством пищевых цепей и пищевых сетей. В связи с этим высокоорганизованные организмы не могут существовать без более простых.