Реферат: Организм и внешняя среда
В образовании белков участвует до 20 различных аминокислот, соединяющихся в разной последовательности в длинные цепи, называемые полипептидными. Аминокислоты в них связаны друг с другом группами —NH2 и —COOH так, что к аминогруппе одной аминокислоты присоединяется карбоксил другой и т. д. Такую связь называют пептидной:
Рассмотрим строение белков подробнее. Эти сведения понадобятся нам в дальнейшем, так как основные приспособительные изменения организма на молекулярном уровне прежде всего и главным образом касаются структуры и свойств клеточных белков. Белки — макромолекулы, в состав которых входит от 100 до нескольких тысяч аминокислотных остатков, что обусловливает их большую ММ, измеряемую десятками и сотнями тысяч атомных единиц массы, диаметром от 5 до 100 нм. Более короткие цепи (от 2 до 10) называют пептидами, а от 10 до 100 аминокислотных остатков — полипептидами. Пептидная цепь — лишь первичная структура белка, способная образовывать высшие структуры: свертывание цепи в клубок (глобулярные белки) или принятие ею нитчатой формы (фибриллярные белки). Связи между атомами, составляющими белковую молекулу, могут быть различными и обладать неодинаковой прочностью. Наиболее npo4Hbfковалентные связи, т. е. такие, в которых пара электронов находится во владении двух смежных атомов. В белках такими связями соединены остатки аминокислот и атомы, их составляющие. Иначе говоря, первичная структура белка достаточно прочна, так как пептидная цепь построена с помощью ковалентных связей. Но есть связи и другого типа, например водородные, возникающие между двумя атомами с помощью водорода (чаще всего между атомами кислорода и азота). Дело в том, что у кислорода в местах соединения аминокислот друг с другом (т. е. в пептидной связи) имеется небольшой отрицательный заряд, а у азота — небольшой положительный, так как у ядер атома кислорода больше сродство с электронами, чем у ядер азота. Вследствие этого ковалентная пара электронов, связывающая водород с азотом, смещается — и атом водорода оказывается между двумя заряженными центрами:
С помощью этих связей образуется вторичная структура белковой молекулы, например спирализация ее, появляются складчатые и нитчатые структуры. При образовании третичной структуры, т. е. пространственной упаковки спирализованных и неспирализованных участков белковой модекулы (например, в шарообразных, глобулярных белках), большое значение имеет возникновение мостиков за счет двух атомов восстановленной серы (R—S —S-Ri, где R и Ri — два участка полипептидной цепи). Кроме того, здесь принимают участие и электростатические (ионные) связи, появляющиеся между двумя ионизированными атомами (опять же, как правило, между азотом и кислородом):
Наконец, четвертичная (наиболее сложная) структура — связь между несколькими одинаковыми или различными белками (называемыми протомерами), объединяющая их в одно целое (олигомер). Такая структура поддерживается ионными или водородными связями. Существуют и другие связи, менее прочные, чем кова-лентные, например взаимодействие свободных групп ОН и СООН, неполярных углеводородных радикалов и др.
Разрыв нековалентных связей приводит к нарушению высших белковых структур, называемому денатурацией белков. При этом белки утрачивают ряд своих функциональных свойств, становятся более доступными действию расщепляющих их ферментов. Денатурация в зависимости от степени ее и условий может быть и обратимой, и необратимой.
4. Нуклеиновые кислоты и синтез белков
Чем же обусловлена строго определенная последовательность аминокислот в белках? Как показали многочисленные исследования, информация об этом закодирована в генном аппарате клеток (геноме), т. е. в ДНК хроматина клеточного ядра. Для каждого синтезируемого в организме белка имеется своя ДНК (или участок цепи ДНК), и синтезированы могут быть только те белки, структура которых закодирована в геноме. ДНК —- сложные макромолекулы (с MM от 10000 до миллионов атомных единиц), представляющие собой цепи соединенных друг с другом нуклеотидов (от 2000 до IO8 ед.) и образующие двойную спираль.
Каждый нуклеотид состоит из азотистого (пуринового или пиримидинового) основания, пятиуглеродного сахара дезоксирибозы и остатка фосфорной кислоты. Из азотистых оснований в состав ДНК входят аденин, гуанин, цитозин и тимин,2 причем двойная цепь ДНК построена так, что против аденина одной цепи находится тимин другой, а против гуанина располагается цитозин. Между этими парами (так называемыми комплементарными) и образуются связи между двумя цепями ДНК. Каждой входящей в состав того или иного белка аминокислоте соответствует тройка (триплет, или кодон) последовательно соединенных оснований; порядок же аминокислот в белке определяется соответствующим расположением триплетов.
Синтез белка начинается с образования иРНК. РНК отличаются от ДНК тем, что в них вместо тимина присутствует азотистое основание — урацил, вместо дезоксирибозы — рибоза, а также тем, что они одноцепочечные. Синтезируется иРНК в клеточном ядое по образцу соответственной ДНК, как бы считывая часть содержащейся в ней информации, копируя последовательность оснований в ДНК, определяющую структуру синтезируемого белка. Это процесс транскрипции, который можно сравнить с раскроем ткани по выкройке. Затем иРНК покидает ядро и передает полученную информацию в место синтеза — рибосомы, построенные из особой рРНК, т. е. происходит процесс трансляции. При помощи иРНК рибосомы объединяются в комплексы — полирибосомы. Одновременно активируются необходимые аминокислоты и при затрате энергии АТФ соединяются с третьим видом РНК — тРНК, т.е. совершается процесс рекогниции, или узнавания. Активированные аминокислоты транспортируются к рибосомам. Предполагается, что рибосомы движутся вдоль молекулы иРНК и как бы считывают принесенную ею информацию, по мере продвижения синтезируя полипептидную цепь. При этом иРНК расщепляется — и остатки ее используются для синтеза новых иРНК.
Белки в организме синтезируются практически все время, но далеко не с полным использованием потенциальных возможностей. Некоторые участки генома могут быть на то или иное время репрессированы, т. е. выключены присоединением к ДНК различных веществ (в частности, щелочных белков гистонов). Для того чтобы данный участок опять включился в работу, необходимо отщепление этих веществ, т. е. дерепрессия. Кроме того, для начала синтеза белка должна произойти индукция его, которая также осуществляется присоединением к ДНК различных веществ. При этом дерепрессорами и индукторами могут быть самые различные вещества: гормоны, продукты обмена веществ и др. Природа их до конца еще не изучена.
Состав генома строго стабилен и практически не изменяется под влиянием внешних и внутренних воздействий. Тем не менее в ряде случаев возможно и изменение состава ДНК, замена одного основания другим. Такое явление называют мутацией. В этом случае закодированный на данном участке ДНК белок уже не может синтезироваться с прежней последовательностью аминокислот. Он или совсем перестает образовываться, или создается с измененной структурой. При этом он или теряет свои функциональные свойства, или приобретает новые. Мутации могут наносить вред организму, иногда они приводят его даже к гибели (так называемые летальные мутации). Но они могут и совпадать с интересами организма, сообщая ему новые свойства, способствующие лучшему приспособлению его к условиям среды. В настоящее время мутации осуществляются и искусственно, что открывает широкие перспективы для преобразования живых организмов.
5. Взаимоотношения организма со средой
Ни один живой организм нельзя представить вне окружающей среды и вне взаимодействия с нею. Из среды организм получает питательные вещества и кислород, в нее отдает конечные продукты обмена веществ. Среда воздействует на него рядом своих факторов: лучистой энергией (световой, ультрафиолетовой, радиоактивной), электромагнитными полями, атмосферным и гидростатическим (для ведущих водный образ жизни) давлением, температурой, различными химическими веществами. Она же неизбежно предполагает взаимодействие с другими живыми организмами.
От окружающей среды организм непрерывно получает информацию, на которую реагирует в виде ответных действий: движения, речи (у животных — издания тех или иных звуков), мимики, поедания пищи и т. п. Таким образом, живой организм непрерывно пропускает через себя не только вещества и энергию, но и поток информации.
Воспринимается информация специальными рецеп-торными аппаратами — органами чувств, затем передается центральной нервной системе, где происходит «узнавание» сигнала и формирование ответной реакции. Информация проходит по каналам связи либо в виде электрических импульсов по нервным волокнам в ту или другую сторону (нервная связь), либо с помощью химических веществ по кровяному руслу (гуморальная связь). При этом нервная связь четко направлена на определенный участок (центр) нервной системы или орган, а гуморальная связь более генерализованная, т. е. направлена не на одну мишень, а сразу на несколько. Воспринимающая возможность различных рецепторов и пропускная способность каналов связи неодинаковы, поэтому поток информации, получаемый рецептором, передаваемый от него к центру и сохраняющийся в памяти, тоже различен.
Количество информации принято измерять в двоичных знаках — битах. У человека поток информации через зрительный рецептор равен 108 -109 бит/с. Нервные пути пропускают 2 · 106 бит/с. До сознания доходит около 50 бит/с, а в памяти прочно задерживается только 1 бит/с. Таким образом, за 80 лет жизни память удерживает информацию порядка 109 бит. Следовательно, мозгом оценивается не вся, а наиболее важная информация. На пути к нему все несущественное устраняется, отфильтровывается.
Получаемая от среды информация определяет работу функциональных систем организма и поведение человека или животного, регулируя их: усиливая или ослабляя.
Для управления поведением человека и активностью его функциональных систем (т. е. выходной информацией, идущей из мозга) достаточно около 107 бит/с при подключении программ, содержащихся в памяти.
Жизнедеятельность организма регулируется прежде всего на субклеточном и молекулярном уровнях. Это химическая авторегуляция реакций обмена веществ. Она решает местные задачи и является основой всех видов регуляции. Осуществляется она путем изменения концентраций метаболитов, повышения или снижения активности и количественного содержания ферментов, т. е. усиления или угнетения их синтеза, структурных изменений их и других функциональных белков. Но регуляция происходит и на более высоких уровнях: клетки в целом, ткани, органа, функциональной системы, организма. Чем на более высокий уровень передаются управляющие выходные сигналы, тем более обобщенный характер они носят. У человека и животных высшим центром, управляющим вегетативными функциями (кровообращением, дыханием, движением, выделением гормонов и т.п.), является гипоталамус, расположенный в нижней части промежуточного мозга, имеющий связи с системой желез внутренней секреции, другими частями мозга и центром сознания — его корой. Поступающие сигналы могут осознаваться или не осознаваться. Управляющие ответы на неосознанные сигналы среды могут осуществляться гипоталамусом и без участия высшего отдела головного мозга — его коры.
В обычных, привычных для организма условиях среды он находится в уравновешенном с ней состоянии. Он сохраняет постоянство как уровня активности функциональных систем, так и состава своей внутренней среды. Но условия среды могут изменяться в неблагоприятную для организма сторону. Нередко эти изменения происходят очень быстро, а порой несут тревожную информацию. Но организм далеко не всегда может сразу настроиться так, чтобы без существенного вреда перенести новые условия. Так, оказавшись на высоте, где снижено парциальное давление кислорода и углекислоты, под влиянием получаемой информации организм перестраивает свою функциональную активность на изменившиеся уровни: возрастают частота и минутный объем дыхания, частота сердечных сокращений, увеличивается объем циркулирующей крови, но степень насыщения артериальной крови кислородом все равно снижается.
Влияние пониженного барометрического давления на некоторые функции организма человека
Давление, кПа |
Высота над уровнем моря, M | Парциальное давление в альвеолярном воздухе, кПа | Частота в 1 мин | Минутный объем дыхания, л/мин | Объем циркулирующей крови, мл/кг | Насыщение артериальной крови кислородом,% | ||
O2 | CO2 | дыхания | сердечных сокращений | |||||
99.1 | 0 | 13.3 | 5.0 | 12 | 70 | 8.8 | 38 | 98 |
64.2 | 3658 | 6.3 | 4.9 | 14 | 103 | 9.1 | 60 | 85 |
54.8 | 4877 | 5.5 | 4.1 | 12 | 103 | 9.5 | 70 | 80 |
50.4 | 5486 | 5.0 | 3.4 | 12 | 108 | 11.1 | 70 | 77 |
46.4 | 6009 | 4.5 | 3.3 | 13 | 107 | 13.0 | 70 | 76 |
42.7 | 6705 | 4.0 | 3.2 | 15 | 124 | 15.0 | 70 | 64 |
Если человек впервые попал в горы и не подготовлен к таким условиям, у него вследствие недостатка кислорода (гипоксии) и повышенной отдачи возбуждающей дыхательный центр углекислоты (гипокапнии) может развиться горная болезнь. Сначала появляются общая слабость и головная боль, нарушается восприятие вкуса и запахов (например, начинает казаться, что колбаса пахнет рыбой, а хлеб горек), угнетается психика, затем присоединяются слуховые и зрительные галлюцинации, и человек теряет сознание. Дыхание то останавливается, то (по мере накопления в крови углекислоты) возобновляется, потом (в связи с удалением СО2 из крови) снова прекращается и т. д. Если человеку при этом не дать кислородный аппарат или не спустить его на более низкий уровень, он может погибнуть. Так было, например, в прошлом веке с экипажем французского воздушного шара «Зенит», занесенного на большую высоту, в результате чего все три человека, находившиеся в гондоле, умерли. Трагически окончилось и восхождение альпинистов одной зарубежной команды, которые, будучи на высоте 6000 м без кислородных приборов, оказались вследствие неожиданного изменения погоды в условиях барометрического минимума циклона, соответствующего высоте более 10 ООО м.
Значит, к пребыванию на высотах, к условиям гипоксии, организм должен адаптироваться постепенно, так как экстренное приспособление организма, не подготовленного к пребыванию в гипоксичееких условиях, не является полным и при большой силе воздействия среды оказывается недостаточным. В наше время ни один альпинист не пойдет на восхождение без предварительной горной акклиматизации.