Реферат: Оргоноиды
Современная цитология относит к органоидам клетки рибосомы, эндоплазм этическую сеть, комплекс Гольджи, митохондрии, клеточный центр, пластиды, лизосомы. Рибосомы (рис. 5) - небольшие сферические тельца,
имеющие размеры от 150 до 350 А. Они описаны сравнительно недавно
благодаря применению электронного микроскопа в исследования
клеточных структур. Рибосомы расположены в цитоплазматическом
матриксе, а также связаны с мембранами эндоплазматической сети. Рибо-
сомы любых организмов - от бактерий до млекопитающих - характеризу-
ются сходством структтуры и состава. В состав входит белок и РНК.
Наибольшее количество рибосом обнаружено в клетках интенсивно
размножающихся тканей. На рибосомах осуществляется синтез белка.
Каждая из рибосом состоит из двух неравных частей - субъединиц. А (ангстрем) - единица длины, равная одной десятимиллионной доле миллиметра.
В меньшую субъединицу молекулами РНК доставляются аминокислоты, а растущая белковая цепочка локализуется в большей субъединице.
Рибосомы обычно объединены в группы - полисомы (или полирибосомы); чем обеспечивается, по видимому, согласование их деятельности.
Эндоплазматическая сеть, или вакуолярная система, обнаружена в
клетках всех растений и животных, подвергнутых исследованию под
электронным микроскопом. Она представляет собой систему мембран,
формирующих сеть канальцев и цистерн. Эндоплазм этическая сеть имеет большое значение в процессах внутриклеточного обмена, так как увеличивает площадь «внутренних поверхностей» клетки, делит ее на части, отличающиеся
физическим состоянием и химическим составом, обеспечивает изоляцию ферментных систем, что в спою очередь необходимо для их последовательного вступления в согласованные реакции. Непосредственным продолжением эндоплазматической сети является ядерная мембрана, отграничивающая ядро от цитоплазмы, и цитоплазматическая мембрана, расположенная на периферии клетки.
В совокупности внутриклеточные канальцы и цистерны образуют целостную систему, канализирующую клетку и называемую некоторыми исследователями вакуолярной системой. Наиболее развита вакуолярная система в клетках с интенсивным обменом веществ. Предполагают ее участие в активном перемещении жидкостей внутри клетки.
Часть мембран несет на себе рибосомы. В некоторых специальных, лишенных гранул, вакуолярных образованиях происходит синтез жиров, В других - гликогена. Ряд частей эндоплазматнческой сети связан с комплексом Гольджн (см, ниже) н имеет, по-видимому, отношение к выполняемым им функциям.
Образования вакуолярной системы очень лабильны и могут меняться в зависимости от физиологического состояния клетки, характера обмена и при дифферснцировке.
Комплекс Гольджи (рис. 6) виден в световом микроскопе как специфический дифференцированный участок цитоплазмы. В клетках высших животных он представляется состоящим из сеточки,, иногда в виде скопления чешуек, палочек и зернышек. Электронномикроскопические исследования позволили убедиться, что комплекс Гольджи построен также из мембран и напоминает строку полых рулонов, положенных друг на друга. В клетках растений и беспозвоночных животных комплекс Гольджи удалось обнаружить лишь с помощью электронного микроскопа и
доказать, что он образован небольшими тельцами -диктиосомами,
рассеянными по всей цитоплазме.
Полагают, что основная функция комплекса Гольджи - концентрация, обезвоживание и уплотнение продуктов внутриклеточной секреции и веществ» 'поступивших извне, предназначенных для выведения из клетки.
Митохондрии (от греч. mitos - нить, chondros - зернышко)-органоиды в виде гранул, палочек, нитей, видимых в световом микроскопе (рис. 7). Величина митохондрий сильно колеблется, достигая максимально в длину 7
Митохондрии встречаются во всех клетках растений и животных. Число их в клетках, выполняющих различную функцию, неодинаково и колеблется от 50 до 5000. Электронная микроскопия дала возможность изучить детали строения митохондрий. Стенка митохондрии состоит из двух мембран: наружной и внутренней; последняя имеет выросты внутрь - гребни или кристы, делящие митохондрию на отсеки. Основная функция митохондрий» выясненная., благодаря выделению их из клетки с помощью метода фракционного центрифугирования, это превращение энергии различных соединений в_энергию фосфатных связей (АТФ - аденозинтрифосфат и АДФ - аденозиндифосфат). В таком состоянии энергия становится наиболее доступной для использования в жизнедеятельности клетки, в частности для синтеза веществ.
Пути образования новых митохондрии до сих пор неясны. Картины, видимые в световой микроскоп, говорят в пользу того, что митохондрии могут размножаться путем перешнуровки или почкования и что при делении клетки они более или менее равномерно распределяются между дочерними клетками. Создается убеждение, что между митохондриями клеток различных генераций существует преемственность. Работы последних лет свидетельствуют о наличии в митохондриях дезоксирибону-клеиновой кислоты (ДНК).
Клеточный центр (центросома) (рис. 8)-органоид, отчетливо видимый в световой микроскоп и состоящий из одной или двух мелких гранул - центриолей. С помощью электронного микроскопа установлено, что каждая центриоль - это цилиндрическое тельце длиной 0,3-0,5 м и диаметром около 0,15 р. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. От центриолей под углом отходят отростки, которые, по-видимому, являются дочерними центриолями.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--