Реферат: Орграфы, теория и применение
Выполнила:
Студентка группы 32-08
Рассанова Мария
Научный руководитель:
Качевский
Дмитрий Николаевич
Чебоксары 2009
Содержание
Введение
Глава 1. Граф. Общее представление
· Связность
· Дополнительные определения
· Применение орграфов
Глава 2. Теория графов
· Определения
· Способы задания графов
· Связность
· Планарность
· Матричное представление графов
· Орграфы и соединимость
· Орграф и его конденсация
· Ориентированная двойственность и бесконтурные орграфы
· Слабый функциональный орграф
Заключение
Список исследуемой литературы
ВВЕДЕНИЕ
Актуальность темы. Теория графов предоставляет эффективные средства формализации задач из самых различных областей: экономики, физики, химии, планово-производственной практики, управления производством, сетевого и календарного планирования, информационных систем, и многих других. Одним из таких средств является ориентированный граф. Существует большое количество задач, решаемых на орграфах. Чаще всего рассматриваются задачи о достижимости (т.е. о существовании пути, связывающем две заданные вершины), о нахождении путей, обладающих какой-либо экстремальной характеристикой (например, кратчайший, или наиболее надежный путь), о случайных блужданиях, потоковая задача. Все они хорошо изучены и разработаны эффективные алгоритмы их решения. При этом предполагается, что все пути на графе являются допустимыми, т.е. не накладывается никаких ограничений на достижимость.
Наиболее известные работы в этой области принадлежат Кристофидесу Н., Басакеру Р.Д., Харари Ф., Бержу К., Дейкстре Э., Флойду Р., Замбицкому Д.К., Оре О., Саати Т., Фалкерсону Д.Р., Форду Л.Р.
В отличие от классического подхода, Басанговой Е.О. и Ерусалимским Я.М. было введено понятие ориентированных графов с нестандартной достижимостью, т.е. орграфов, в которых на допустимые пути накладываются какие-либо ограничения. В обычном ориентированном графе, для того чтобы одна вершина была достижима из другой, необходимо существование пути, связывающего две эти вершины. В случае же орграфов с нестандартной достижимостью требуется, кроме того, чтобы этот путь удовлетворял некоторому условию (ограничению). Понятно, что в этом случае классические алгоритмы решения задач на графах непосредственно неприменимы.
В работах Ерусалимского Я.М., Басанговой Е.О., Логвинова С.Ю., Скороходова В.А., Петросяна А.Г. описаны различные виды ограничений на достижимость. Так, Ерусалимским Я.М. и Басанговой Е.О. рассмотрено несколько видов достижимости на частично-ориентированных графах, на которых присутствуют ориентированные и неориентированные ребра. Введено понятие смешанной цепи, на дуги и звенья которой накладываются различные условия, в зависимости от вида ограничений. Например, рассмотрены случаи, когда в смешанной цепи два неориентированных ребра не могут следовать непосредственно друг за другом, или дуги и звенья строго чередуются.
В работах Скороходова В.А. рассмотрены орграфы с накоплением неубывающей магнитности - го уровня. На таких графах допустимым является магнитно-накопительный путь порядка с неубывающей магнитностью, т.е. такой путь, что если на - м шаге величина накопленной магнитности не меньше и среди выходящих дуг есть хотя бы одна магнитная, то - я дуга пути должна быть магнитной. Другой вид достижимости – вентильно-накопительная. В этом случае множество дуг графа представляется в виде . В допустимом пути прохождение по дуге множества делает доступными для прохождения дуги множества . Также рассмотрены условия накопления - исчезания и возрастания-убывания магнитности, вентильная достижимость с возрастанием-убыванием доступа и энергии на пути, механическая достижимость.
Петросяном А.Г. определена барьерная достижимость, при которой множество дуг разбивается на три попарно непересекающихся подмножества: дуг, увеличивающих барьерный показатель, дуг барьерного перехода и нейтральных дуг. С каждым отрезком пути связана числовая характеристика – барьерный показатель частицы. Путь допускает барьерный переход уровня , если к некоторому шагу он накопил величину барьерного показателя, не меньшую . Еще один вид ограничений – биполярная магнитность. В этом случае определяется величина накопления биполярной магнитности. Путь считается допустимым, если он удовлетворяет условию биполярной магнитности уровня .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--