Реферат: Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций
Таким образом, функция, заданная таблицей состояний (табл. 1.8), запишется аналитически следующим образом:
Термины сокращенного представления функции в виде ДСНФ в частности означают: термин «дизъюнкция» указывает на то, что внешней функцией разложения является дизъюнкция, а внутренней — конъюнкция.
Термин «совершенная» указывает на то, что дизъюнктивные члены формируются из всех аргументов X1 …Xn , то есть на основе минтермов.
Термин «нормальная» указывает на то, что форма записи является двухуровневой , то есть дизъюнкция конъюнкций.
Аналитическая запись функции в виде КСНФ означает, что переключательная функция, заданная табличным способом, может быть представлена в виде логического произведения (конъюнкцией) дизъюнктивных членов. При этом каждый из этих членов представляет собой сумму значений функции на i-ом наборе и i-ого макстерма.
Поскольку от n аргументов существует макстермов, то аналитическая запись функции в КСНФ имеет вид:
В итоге для рассматриваемого примера (табл. 1.8):
или
Сопоставляя две формы записи одной и той же переключательной функции легко убедиться, что запись функции в виде КСНФ более громоздкая, так как содержит большее число членов. Это объясняется тем, что число наборов, на которых переключательная функция равна 0, значительно больше числа наборов, на которых функция равна 1. Для случая, когда число наборов, на которых функция равна 0, было бы меньше числа наборов, на которых функция равна 1, более предпочтительным оказывается представление функции в виде КСНФ. Отсюда следует, что обе формы представления функций фактически эквивалентны. Однако при минимизации функций более удобной оказывается запись их в виде ДСНФ. Поэтому в дальнейшем будем рассматривать только такие формы.
ЛИТЕРАТУРА
1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.
2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.
3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.
4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.
5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.
6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.