Реферат: Основные генетические характеристики популяции
КАФЕДРА БИОЛОГИИ С ОБЩЕЙ ГЕНЕТИКОЙ
Реферат на тему:
ОСНОВНЫЕ ГЕНЕТИЧЕСКИЕ
ХАРАКТЕРИСТИКИ ПОПУЛЯЦИИ
Москва, 2001 г.
Популяция (франц. population – население) – совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.
Популяция – элементарная эволюционная структура. Основу современной эволюционной теории, которую называют неодарвинизмом или синтетической теорией эволюции, составляет изучение популяционной генетики. Гены, действуя независимо или совместно с факторами среды, определяют фенотипические признаки организмов и обуславливают изменчивость в популяциях. Фенотипы, приспособленные к условиям данной среды или «экологическим рамкам», сохраняются отбором, тогда как неадаптивные фенотипы подавляются и, в конце концов, элиминируются. Естественный отбор, влияя на выживание отдельных особей с данным фенотипом, тем самым определяет судьбу их генотипа, однако лишь общая генетическая реакция всей популяции определяет выживание данного вида, а также образование новых видов. Только те организмы, которые, прежде чем погибнуть успешно произвели потомство, вносит вклад в будущее своего вида. Для истории данного вида судьба отдельного организма не имеет существенного значения.
ГЕНОФОНД
Генетически популяция характеризуется ее генофондом (аллелофондом).
Генофонд представлен совокупностью аллелей, образующих генотипы организмов данной популяции. В каждой данной популяции состав генофонда из поколения в поколение может постоянно изменяться. Новые сочетания генов образуют уникальные генотипы, которые в своем физическом выражении, т. е. в форме фенотипов, подвергаются давлению факторов среды, производящих непрерывный отбор и определяющих, какие гены будут переданы следующему поколению.
Популяция, генофонд которой непрерывно изменяется из поколения в поколение, претерпевает эволюционное изменение. Статичный генофонд отражает отсутствие генетической изменчивости среди особей данного вида и отсутствие эволюционного изменения.
Генофонды природных популяций отличает наследственное разнообразие (генетическая гетерогенность, или полиморфизм), генетическое единство, динамическое равновесие доли особей с разными генотипами.
Наследственное разнообразие заключается в присутствии в генофонде одновременно различных аллелей отдельных генов. Первично оно создается мутационным процессом. Мутации, будучи обычно рецессивными и не влияя на фенотипы гетерозиготных организмов, сохраняются в генофондах популяций в скрытом от естественного отбора состоянии. Накапливаясь, они образуют резерв наследственной изменчивости . Благодаря комбинативной изменчивости этот резерв используется для создания в каждом поколении новых комбинаций аллелей. Объем такого резерва огромен. Так, при скрещивании организмов, различающихся по 1000 локусов, каждый из которых представлен десятью аллелями, количество вариантов генотипов достигает 101000 .
Генетическое единство популяции обуславливается достаточным уровнем панмиксии. В условиях случайного подбора скрещивающихся особей источником аллелей для генотипов организмов последовательных поколений является весь генофонд популяций. Генетическое единство проявляется также в общей генетической реализации популяции при изменении условий существования, что обуславливает как выживание вида, так и образование новых видов.
ЗАКОН ХАРДИ – ВАЙНБЕРГА
Любой физический признак определяется одним или несколькими генами. Каждый ген может существовать в нескольких различных формах – аллелях. Число организмов в данной популяции, несущих определенный аллель, определяет частоту данного аллеля (которую иногда называют частотой гена , что менее точно). Например, у человека частота доминантного аллеля, определяющего нормальную пигментацию кожи, волос и глаз, равна 99%. Рецессивный аллель, детерминирующий отсутствие пигментации – так называемый альбинизм, - встречается с частотой 1%. В популяционной генетике частоту аллелей или генов выражают не в процентах, а в десятичных дробях. Таким образом, в данном случае частота доминантного аллеля равна 0,99 , а частота рецессивного аллеля альбинизма – 0,01. Общая частота аллелей в популяции составляет 100%, или 1,0.
Как это принято в классической генетике, аллели обозначаются буквами, например A – доминантный аллель, a – рецессивный и рецессивный) в генофонде популяции, используются символы p и q . Таким образом,
где p – частота доминантного, q – частота рецессивного аллеля. (В примере с пигментацией у человека p = 0,99 , а q =0,01). Значение этого уравнения состоит в том, что, зная частоту одного из аллелей, можно определить частоту другого.
Частоты отдельных аллелей в генофонде позволяют вычислять генетические изменения в данной популяции и определять частоту генотипов .
Математическая зависимость между частотами аллелей и генотипов в популяциях была установлена в 1908 г. независимо друг от друга английским математиком Дж. Харди и немецким врачом В. Вайнбергом. Эта зависимость получила название закон Харди – Вайнберга (равновесие Харди – Вайнберга). Закон этот гласит: «В бесконечно большой популяции из свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты доминантного и рецессивного аллелей сохраняются постоянными из поколения в поколение».
Поэтому любые изменения частоты аллелей должны быть обусловлены нарушением одного или нескольких перечисленных выше условий. Все эти нарушения способны вызвать эволюционное изменение. Эти изменения и их скорость можно изучить и измерить с помощью уравнения Харди – Вайнберга .
Если имеется два организма, один гомозиготный по доминантному аллелю A , а другой – по рецессивному аллелю a , то все их потомки будут гетерозиготными
Если наличие доминантного аллеля A обозначить символом p , а рецессивного аллеля a – символом q , то картину скрещивания между особями F1 , возникающие при этом генотипы и их частоты можно представить следующим образом:
Используя символы p и q результаты приведенного выше скрещивания можно представить следующим образом:
p 2 – доминантные гомозиготы
2pq – гетерозиготы
q 2 – рецессивные гомозиготы.
Такое распределение возможных генотипов носит статистический характер и основано на вероятностях. Три возможных генотипа, образующихся при таком скрещивании, представлены со следующими частотами:
AA 2Aa aa
0,25 0,50 0,25
Сумма частот трех генотипов, представленных в рассматриваемой популяции, равна единице; пользуясь символами p и q, можно сказать, что вероятности генотипов следующие:
На математическом языке представляет собой уравнение вероятности, тогда как
является квадратом этого уравнения (т.е.
).
Поскольку
p – частота доминантного аллеля;
q – частота рецессивного аллеля;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--