Реферат: Основные идеи квантовой механики
(1.3)
Через нее выражается распределение вероятностей осуществления определенных исходов опыта при заданной начальной стадии. Иными словами, квантовая механика оперирует только вероятностями. В частности, она не может сказать, в какую точку экрана попадет электрон, она может лишь определить вероятность, с какой электрон может оказаться в точке. В настоящее время волновая функция лежит в основе квантово-механического описания микросистем, подобно уравнениям Гамильтона в классической механике. В 1925 г. Гейзенберг, Борн и Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Шредингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку её математический аппарат был им более знаком, а её понятия казались более «физическими»; операции же над матрицами – более громоздкими. Вскоре после того, как Гейзенберг и Шрёдингер разработали теорию квантовую механику, Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями.
2. СОВРЕМЕННАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ ТЕОРИИ
Квантовая (волновая) механика пытается объяснять как корпускулярные, так и волновые свойства вещества. Волна любой природы полностью описывается её амплитудой и фазой, поэтому квантовая механика должна использовать именно такое описание. Функция волнового процесса представляет собой суперпозицию комплексных экспонент, взятых с определёнными весами (амплитудами). Отсюда описание системы (вообще любой, но актуально только микроразмерной) комплексной волновой функцией, амплитуда и фаза которой полностью определяют состояние такой системы. Это описание позволяет естественным образом описывать волновые явления, такие, как интерференцию элементарных частиц или дифракцию электронов на кристаллической решетке (в классической физике эти свойства присущи исключительно волнам, а состояние частицы характеризует значение ее координат и импульса в данный момент времени). Одно из отличий квантовой механики от обычной заключается в том, что вероятность обнаружить электрон в данном месте ещё не полностью определяет его состояние. Для описания состояния электрона используется комплексная вероятность. Волновая функция и есть значение этой комплексной вероятности. Плотность вероятности обнаружения электрона в данной точке равна квадрату модуля комплексной вероятности (см. формулу 1.3). Комплексность приводит к эффекту интерференции. Практически интерференция наблюдалась для фотонов, электронов и некоторых атомов. Другим необычным свойством электронного «облака» является его неподатливость. Если со всех сторон начать сдавливать это облако, стремясь уменьшить его размеры, то оно станет оказывать всё большее и большее давление. Т.е. попытка ограничить размеры вероятного положения электрона приводит в пределе к бесконечному сопротивлению. Можно представить себе этот процесс, словно электрон начинает метаться по облаку, и чем меньше его размеры, тем сильнее он мечется, т.е. тем больше его кинетическая энергия. Однако такие представления в квантовой физике не могут быть чем-то большим, чем попыткой изобразить процесс. При экспериментах полной аналогии не наблюдается. Напрашивающийся вывод: квантовые частицы – не частицы и не волны, а нечто третье. Другими словами, если мы пытаемся насильно избавить электрон от неопределённости в координате (придать ему чисто корпускулярные свойства), то мы неизбежно увеличиваем неопределённость в импульсе электрона (т.е. стремимся сделать его чистой волной). Все вышесказанное было сформулировано в «принцип неопределенности Гейзенберга»: положение электрона в атоме неопределенно, невозможно одновременно точно определить и скорость электрона и его координаты в пространстве.
· электрон может находиться на любом расстояние от ядра;
· вероятность его нахождения в разных местах атома различна;
· поэтому вводится понятия электронное облако, орбиталь, уровень, подуровень.
Чем определеннее координата микрочастицы, тем менее определенным является импульс и наоборот. Гейзенберг установил, что произведение этих двух неопределённостей никогда не бывает меньше конкретной величины –постоянной Планка.
(2.1)
Х – координаты микрочастицы;
Р – импульс микрочастицы;
h – постоянная Планка.
Это соотношение называется соотношением неопределённостей. Аналогичные соотношения неопределённостей связывают и некоторые другие характеристики микрочастицы. Такие характеристики частицы называются дополнительными друг к другу. Общее словесное описание этого закона таково: создавая всё большую определённость в какой-либо одной характеристике частицы, природа уменьшает определённость в дополнительной ей характеристике. Такое «квантовое дрожание» (обычно говорят нулевые колебания) локализованной микроскопической частицы неустранимо, и именно оно приводит к некоторым чисто квантовым явлениям. Например, даже при нулевой температуре, когда, согласно классической механике, никакого движения не должно быть, нулевые колебания по-прежнему остаются. Именно из-за этого жидкий гелий не затвердевает при нормальном давлении даже при нулевой температуре по Кельвину. Вышеописанное свойство электронного облака сразу же меняет понятие наблюдения за микрочастицей. Действительно, наблюдение – это процесс взаимодействия объекта с прибором, в результате которого на выходе прибора появляется какой-то определённый сигнал. Но всякое взаимодействие, а значит, и просто наблюдение, самим фактом своего существования принципиально меняет свойства наблюдаемого объекта. И важно, что это возмущение нельзя сделать пренебрежимо малым – важен сам факт возмущения. При измерении какого-либо свойства частицы, и даже просто при её наблюдении, исходное состояние частицы, как правило, разрушается. Можно сказать, что какое-либо определённое квантовое состояние частицы – невероятно «хрупкая» вещь. Это важное свойство используется в квантовой телепортации и квантовой криптографии. Следующим важным свойством микрочастицы является тот факт, что она не всегда может находиться в произвольном состоянии. В частности, если она удерживается какими-либо силами в более-менее локализованном состоянии (то есть «не убегает на бесконечность»), то состояния частицы оказываются квантованными: т.е. частица может обладать только определённым дискретным набором энергий в поле связывающих сил. Это кардинально отличается от классической механики: в ней частица может обладать непрерывным набором энергий. С практической точки зрения, самым важным следствием этого является линейчатый (а не непрерывный) спектр излучения и поглощения атомов. Грубо говоря, это объясняется тем, что «длина волны» пси-функции становится сопоставимой с размерами её конфигурации (то есть насчитывается малое число пиков стоячей волны). В своё время наиболее существенная особенность квантовой теории состояла в ее новой, неизвестной в классической физике формулировке, которая понадобилась для того, чтобы ввести в теоретический язык квантование. Атом может находиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов. Это, в частности, означает, что энергия (или гамильтониан) не может быть функцией только координат и импульса, как в классической механике (в противном случае, придавая координатам и импульсам значения, близкие к исходным, мы могли бы непрерывно изменять энергию, в то время как эксперимент показывает, что существуют лишь дискретные энергетические уровни). На следующем этапе развития квантовой механики от традиционного представления о гамильтониане как о функции координат и импульса, пришлось отказаться и заменить его чем-то новым. Основная идея квантовой механики состоит в том, что гамильтониан так же, как и другие величины классической механики, например, координаты или импульсы, надлежит рассматривать как т.н. операторы. Переход от чисел к операторам – одна из наиболее дерзких идей в современной науке. Не вдаваясь в сущность значений операторов, отметим, что на сегодняшний день основная идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» операторы, а численным значениям, принимаемым данной физической величиной – собственные значения ее квантово-механического оператора. Важную особенность квантовой механики: различие, проводимое в ней между понятием физической величины (представимой оператором) и принимаемыми этой величиной численными значениями (представимыми собственными значениями оператора). В частности, энергии в квантовой механике соответствует оператор гамильтониан, а энергетическим уровням (наблюдаемым значениям энергии) – собственные значения спектра гамильтониана. На сегодняшний день теория, способная описать экспериментально наблюдаемое поведение микроскопических частиц в квантовой механике формируется с помощью математического аппарата квантовой механики. Основа математического аппарата квантовой механики была заложена Гейзенбергом и Шредингером в 1925 г.
В настоящее время математическая модель квантовой механики представляет собой теорию гильбертовых пространств и действующих в них операторов. Состояние изолированной квантовой системы – это вектор в гильбертовом пространстве, причем постулируется, что задание вектора состояния – это суть задание полной информации о квантовой системе. Наблюдаемым физическим величинам, соответствуют определенные самосопряженные операторы в этом пространстве, а результатам измерения соответствующей физической величины отвечают средние значения этих операторов по заданному вектору состояний. Эволюция квантовой системы со временем также определяется с помощью оператора эволюции, который, в свою очередь, выражается через гамильтониан системы. В некоторых ситуациях, структура этого пространства и действующих в нём операторов выглядит существенно проще не в абстрактном виде, а в координатном представления, в котором вместо вектора состояния используется его разложение по базису координатного представления, т.е. волновая функция. Уравнение эволюции во времени в этом случае имеет вид дифференциального уравнения в частных производных и является уравнением Шредингера. Введение операторов распахнуло перед физиками ворота в неожиданно богатый и разнообразный микроскопический мир, в котором творческое воображение и экспериментальное наблюдение достаточно успешно сочетаются друг с другом. Ныне, через более чем пятьдесят лет после введения операторов в квантовую механику, их значение по-прежнему остается предметом горячих дискуссий. Исторически введение операторов связано с существованием энергетических уровней, но теперь операторы применяются даже в классической физике. Их значение намного превзошло ожидания основателей квантовой механики. Микроскопический мир подчиняется законам, имеющим качественно новую структуру. В этой связи, важным свойством квантовой механики является принцип соответствия: в рамках квантовой механики доказывается, что в пределе больших энергий (квазиклассический предел) и в случае, когда квантовая система взаимодействует с внешним миром (декогеренция), уравнения квантовой механики редуцируются в уравнения классической физики. Таким образом, квантовая механика не противоречит классической физике, а лишь дополняет её на микроскопических масштабах.
ЗАКЛЮЧЕНИЕ
Квантовая механика изучает движение и взаимодействие микрочастиц. В основе работы Планка, Эйнштейна, Бора, де Бройля, Гейзенберга, Шредингера. Содержит два основных положения:
· электрон имеет двойственную природу – обладает свойствами частицы и волны;
· как частица имеет массу и заряд, однако движение электрона – волновой процесс (например дифракция электронов).
Основные идеи квантовой механики:
· атомы или молекулы испускают или поглощают электромагнитное излучение при изменении своего энергетического состояния;
· атомы или молекулы могут существовать только в определенных энергетических состояниях. Когда атом или молекула изменяет свое энергетическое состояние, они должны испустить или поглотить такое количество энергии, чтобы можно было перейти в новое энергетическое состояние («условие квантования»);
· энергетическое состояние атома или молекулы может быть описано при помощи определенного набора чисел, называемых квантовыми числами.
Квантовые частицы подчиняются определенным законам, являясь чем-то средним между обычными частицами и волнами. Для описания состояния электрона используется комплексная вероятность. Чем больше допустимая неопределенность импульса, тем точнее можно определить координату микрочастицы и наоборот. Квантовые частицы не всегда могут находиться в произвольном состоянии. Основное уравнение квантовой механики – уравнение Шредингера, математический аппарат – теория матриц, теория групп, операторы, теория вероятностей.
Квантовая механика дополняет классическую физику в микроскопических масштабах.
СПИСОК ЛИТЕРАТУРЫ
1. Гнатюк В.И. Концепции современного естествознания. – М: 2006.
2. Грушевицкая Т.Г. Концепции современного естествознания. – М: Высш. Школа, 2006.
3. Грэхэм Л. Квантовая механика М.,2000.
4. Джеммер М. Эволюция понятий квантовой механики. М., 1985