Реферат: Основные идеи квантовой теории и ее эволюция

Содержание:

Основные идеи квантовой теории и ее эволюция.

1.Формирование квантовых представлений…………………………………3

2. Проблема полноты квантовой механики. Парадокс Эйнштейна-Подольского-Розена и его интерпретации…………………………………...5

3. Неравенство Белла и открытие А.Аспекта………...……………………11

4. Физический вакуум и его свойства……………………………………….12

Список использованной литературы………………………………………..16


1. Формирование квантовых представлений.

Почти одновременно с появлением теории относительности в физике произошло событие, которому суждено было стать началом еще одной революции в естествознании. 14 декабря 1900 года, когда в выступлении Макса Планка на заседании Немецкого физического общества впервые прозвучало слово "квант", считается датой рождения учения о квантах. Многие из творцов этого учения - сам Макс Планк, Альберт Эйнштейн, Луи де Бройль, Эдвин Шредингер и другие физики - не смогли примириться с тем, во что превратилось их детище. Например, Эйнштейн в 1925 году в письме Мишелю Бессо назвал квантовую механику "настоящим колдовским исчислением". А Шредингер, беседуя с Нильсом Бором в 1926 году, воскликнул: "Если мы собираемся сохранить эти проклятые квантовые скачки, то я вообще сожалею, что имел дело с квантовой теорией!" Так рассуждали величайшие ученые, а что творилось в умах рядовых физиков, тем более трудно представить. Даже теперь, в 21 веке, ученые не прекращают попыток понять глубинные основы квантовой теории и объяснить смысл ее фундаментальных принципов. Что же заставило физиков работать над созданием квантовой теории? Прежде всего, желание понять природу необъяснимых с позиций классической науки явлений. После того, как стало понятно, что поле - особая форма материи, несводимая к веществу, модифицированная Лоренцем электродинамика Максвелла замечательно справлялась с описанием процессов излучения электромагнитных волн. Неразрешимые проблемы возникли при решении задач о взаимодействии излучения с веществом. В первую очередь это относилось к излучению черного тела, фотоэффекту и оптическим спектрам атомов.

Начало развитию квантовой механики положили работы М.Планка по теории излучения черного тела. Нужно было найти явный вид функции, определяющей спектральную плотность энергии излучения. Определить ее на основе только термодинамики не удалось. Использование электродинамических законов позволило Рэлею получить спектральное распределение:

,

(формула Рэлея – Джинса). Здесь ω – частота излучения; – спектральная плотность энергии излучения; T – температура; c – скорость света; V – данный объем. Этораспределение противоречило экспериментальным данным, так как предсказанный формулой Рэлея – Джинса неограниченный рост спектральной плотности с увеличением частоты в эксперименте не наблюдался, в области высоких частот спектральная плотность снижалась.

Все попытки получить согласующийся с экспериментом результат оказались неудачными. Потребовался принципиально новый взгляд на вещи, который и был сформулирован в работах Планка. Планк представил вещество как набор колеблющихся осцилляторов и поставил задачу исследования равновесия, установившегося в результате обмена энергией между осцилляторами и излучением. Решая эту задачу методом классической физики, он получил распределение Рэлея. Было сделано предположение, что неправильность закона Рэлея связана со слишком большой ролью, которую в классической картине играют высокочастотные осцилляторы. Чтобы подавить значение высокочастотных осцилляторов, было сделано ключевое предположение, что вещество может испускать излучение только конечными порциями, пропорциональными частоте излучения. Энергия каждого осциллятора En = n ћ ω, где ћ – постоянная Планка, n – целое. В результате было получено распределение Планка (1900 г.), которое хорошо согласовывалось с экспериментом:

.

Сначала это казалось просто остроумной гипотезой, решением частной задачи, но постепенно стало ясно, что эта дискретность порций энергии требует пересмотра принципов классической физики. Квантование энергии имеет смысл только для гармонических осцилляторов, в других задачах квант энергии определяется неоднозначно. Оказалось, что правильно считать, что ћ – квант действия. Но уже из существования кванта действия следовала взаимосвязь между динамическими переменными и переменными, характеризующими положение в пространстве, а это не укладывалось в классическую картину мира. Сразу стало очевидным, что аппарат аналитической механики пригоден для введения квантования.

Дальнейшим подтверждением квантовой теории были работы А.Эйнштейна о фотоэффекте (1905 г.) и модель атома Н.Бора (1913 г.). Фотоэффект – испускание веществом быстрых электронов под воздействием излучения. Оказалось, что энергия испущенных электронов не зависит от интенсивности излучения, а зависит от частоты. Это противоречило классическим представлениям. Эйнштейн предположил, что монохроматическое излучение состоит из квантов, причем энергия каждого кванта E = ħ ω. На основании этого предположения были получены результаты, которые прекрасно согласовывались с экспериментом.

Важным шагом вперед стала атомная теория Н.Бора. Классическая физика не смогла объяснить полученные эмпирическим путем спектральные законы – серии в спектрах излучения атомов. Планетарная модель атома, правильность которой подтверждалась в опытах Резерфорда, противоречила классической электродинамике: электроны должны были терять энергию при вращении вокруг ядра атома и падать на него. Бор сохранил планетарную модель атома, но ввел в нее квантовые принципы. Было сделано предположение, что электрон может находиться в состоянии с определенной энергией и в этом стационарном состоянии нет излучения. Излучение возникает только при переходе между состояниями. Принципиальный недостаток теории Бора заключался в искусственном наложении квантовых понятий на классические представления. Кроме того, теория Бора позволяла найти энергию стационарных состояний только для кругового движения. Развитием этой теории стали методы квантования Бора – Зоммерфельда, применимые для многомерного движения. Для определения различных квантовомеханических параметров, которые невозможно было вычислить с имевшимся аппаратом, Бор сформулировал замечательный принцип соответствия, который заключался в том, что для больших квантовых чисел классическая и квантовая физика должны давать одинаковые ответы, – например, по классически вычисленной интенсивности излучения можно вычислить вероятность перехода. В результате было создано то, что называется старой квантовой теорией.

2. Проблема полноты квантовой механики. Парадокс Эйнштейна-Подольского-Розена и его интерпретации.

Самые интересные моменты в истории и методологии современной физики связаны с решением проблемы интерпретации квантовой теории. Эта проблема и сейчас остается в центре внимания научного сообщества, так как ни сторонники копенгагенской интерпретации, ни ее противники не собираются оставлять своих позиций. Однако ни те, ни другие, не отрицая правомерности принципа неопределенностей в квантовой теории, тем не менее не проводят последовательно методологические принципы инвариантности, относительности и симметрии, которые, как мы указывали, непосредственно связаны с проблемой полноты квантовой механики. Как станет ясно из дальнейшего, если мы в своих исследованиях опираемся на эти принципы, то должны с необходимостью признавать, что вероятность есть объективная характеристика, неустранимый факт квантовой теории. А если это так, то нет оснований считать, что в квантовой механике присутствуют субьективно-позитивистские элементы и что она является якобы неполной теорией.

Подобные обвинения были выдвинуты с позиций реализма классической физики, которая отказывала вероятности в праве быть фактом с онтологическим содержанием. Но в действительности дело обстоит как раз наоборот. Если принять, что вероятность — объективная характеристика природы, т.е. имеет онтологическую нагрузку, то можно приблизиться к идеалу А.Эйнштейна, ориентированному на реалистическое толкование квантовой теории, хотя сам ученый в этом идеале не хотел видеть вероятности — “только факты”. Таким образом, если из тезы взять рациональное зерно — признание необходимости реалистического описания микромира, не стесненного, однако, классическими требованиями, из антитезы — признание вероятности как реальности, а не как недостаточности информации об объекте (с чисто гносеологической стороны), то можно прийти к синтезу — вероятностному реализму как диалектическому опровержению классической тезы. И тогда становится ясным, что квантовая механика является полной теорией и поэтому нет необходимости продолжать поиски “скрытых параметров”, имеющих целью вернуть физику к классическому идеалу классической картины мира.

Принимая в качестве критерия полноты теории удовлетворение требования, чтобы каждому элементу физической реальности соответствовал элемент физической теории, А.Эйнштейн, Б.Подольский и Н.Розен сумели показать, что описание квантового состояния волновой функцией не является полным — так называемый парадокс Эйнштейна — Подольского — Розена. Как отмечает X.Бьом, уместнее в этом случае говорить об аргументе, а не о парадоксе, поскольку ничего парадоксального здесь нет. Парадокс означает нечто необыкновенное, странное, неожиданное, невероятное, а Эйнштейн, Подольский и Розен получили в своей работе именно такой результат, какой и хотели получить. Но иначе и не могло быть, поскольку они выбрали критерий реальности, противоположный самой сущности квантовой теории. Согласно этому критерию, существует элемент физической реальности, соответствующий данной физической величине, если ее значения можно определить только с вероятностью, равной единице. При таком критерии было бы парадоксальным, если бы авторы сумели показать, что квантовая теория не является неполной. Как известно, при корректном использовании формального аппарата невозможно опровергнуть то, что заложено в основе. Так что с помощью этого парадокса Эйнштейн не смог доказать несостоятельность квантовой теории, а более логично обосновал свою позицию,

Что касается попыток сделать квантовую механику полной теорией путем введения “скрытых параметров”, то, как известно, они оказались безуспешными. Сначала Р. фон Нейман показал, что существование “скрытых параметров” находится в противоречии с формализмом квантовой механики. Затем шаги, предпринятые Д.Бомом и А.X.Ароновым, тоже не привели к удовлетворительному результату, так как авторы предполагали существование нелокальных свойств, а это противоречило выдвинутому Эйнштейном требованию локальности. Позже Д.Белл обосновал невозможность формулировки квантовой механики как локально-детерминистской теории “скрытых параметров”. Экспериментальная проверка неравенства, установленного Беллом, показала, что в пределах точности измерений результаты подтверждают истинность квантовой теории. Таким образом, можно считать доказанным, что идея “скрытых параметров” несовместима с квантовой теорией. Конечно, искать “скрытые параметры” не просто невозможно, но, видимо, бессмысленно: “скрытые параметры” до того скрыты, что их вообще нельзя найти. Программа Эйнштейна: найти такое корректное полное описание явлений в микромире, чтобы в нем были “только факты, а не вероятности”, чтобы в нем не было неопределенностей и чтобы оно удовлетворяло идеалу строгого классического детерминизма,— оказывается нереализуемой.

Идея “скрытых параметров” и нужна как раз для создания полной теории. Оказывается, однако, что хотя такая теория и претендует на то, чтобы обладать внутренним совершенством, быть естественной и логически простой, она вступает в противоречие с первым и основным критерием — критерием внешнего оправдания. Дело в том, что теория, построенная на основе “скрытых параметров”, не только вводит принципиально ненаблюдаемые (действительно, мистически скрытые!) величины — следствия из этой теории не подтверждаются экспериментально. Попытки создать теорию на основе “скрытых параметров” суть попытки создать полную теорию, но это происходит за счет ее внешнего оправдания, что лишает теорию смысла.

Разумеется, нельзя не согласиться с мыслью Эйнштейна, высказанной им в свое время В.Гейзенбергу, что теория сама решает, какие величины наблюдаемы, а какие ненаблюдаемы, однако второй критерий — критерий внутреннего совершенства, естественности и логической простоты — заставляет нас все-таки принимать, что наблюдаемы те величины, значения которых можно определить экспериментально. Как известно, вероятности переходов из одного состояния в другое в микрофизике являются экспериментально определяемыми величинами. Они определяются по значениям ширины состояния, и хотя это вероятностные величины, их можно получить опытным путем абсолютно достоверно и с любой точностью. А раз так, то основной критерий — критерий внешнего оправдания — обязывает нас принять вероятность как факт и отказаться от дополнительного требования — требования реальности, которое навязывается из соображений соответствия классической теории.

Таким образом, не следует думать, что вероятности и факты только противоположны и поэтому взаимно как бы исключаются. Но тогда почему бы не рассмотреть обратную возможность: не вероятность или факты, а вероятность как факт?

Сильная сторона позиции Эйнштейна — это критерии внешнего оправдания и внутреннего совершенства. Дополнительные же требования, касающиеся полноты теории и безвероятностной реальности, так сильно искажают “тематический фильтр”, по терминологии Дж.Холтона, что делают эйнштейновскую программу невыполнимой. Эти требования продиктованы классическими соображениями и должны быть отброшены, тем более что они сами не соответствуют критерию внешнего оправдания. Дело в том, что не только в микромире, где “мешает” соотношение неопределенностей, но и в макромире физические величины всегда могут быть определены в ходе опыта только с некоторой неточностью. Теория не должна противоречить фактам — она должна соответствовать тому, что может быть установлено экспериментально. А ученым хорошо известно, что все физические величины экспериментально определяются с некоторой неопределенностью, которая, как отметил М.Борн, со временем линейно нарастает. С экспериментальной точки зрения утверждение, что “величина Х имеет абсолютно точное значение”, является бессмысленным, поскольку никто и нигде до сих пор не сделал абсолютно точного измерения. И поэтому данное утверждение должно быть исключено из квантовой теории, подобно тому как в свое время было исключено как бессмысленное понятие одновременности из теории относительности.

Итак, необходимо признать, что классические представления об абсолютно точных физических величинах не имеют внешнего оправдания. Такие представления ведут к идеализированной схеме, которая выглядит естественной и логически простой, однако не соответствует физической действительности, и поэтому от нее необходимо отказаться. Абсолютно точных физических величин нет, как бы того ни хотелось некоторым авторам. “Как получается, что этот ложный идеал так прочно укоренился в головах даже превосходных исследователей? — недоумевал Борн.— Это не физическая проблема, а психологическая, которая, вероятно, может быть понята из развития физической картины мира со времен Ньютона. Именно успехи ньютоновской физики, которая смогла использовать для своих задач математический континуум (D x = 0, D t = 0), закрепили ошибочное убеждение, будто бы существуют абсолютно точные значения физических величин. Законы Ньютона описывают движение материальной точки, но материальная точка — это модель действительности, а вовсе не сама действительность. Отождествлять модель и реальность — также “результативно”, как отождествлять каменную статую с живым человеком. Однако тот факт, что классическая физика может с успехом описывать взаимодействие между двумя массами как эквивалентное взаимодействию между двумя материальными точками, позволил физикам поверить, что точки в самом деле существуют реально и даже что все физические величины реально имеют абсолютно точные значения.

Между тем квантовая физика разрушает эту иллюзию. А потому классический детерминизм не может более быть идеалом для физической теории. Как писал Борн, “детерминизм классической физики оказывается призраком, вызванным тем, что математико-логическим структурам понятий придается слишком большое значение. Это идол, а не идеал в исследовании природы, и, следовательно, его нельзя использовать как возражение против существенно индетерминистской статистической интерпретации квантовой механики”.

К мысли, что время и пространство объективно не существуют как абсолютно точные величины, а являются лишь относительно точно определенными, т.е. существуют с некоторой объективной неопределенностью, можно прийти и другим путем — путем последовательного применения идеи относительности. Эйнштейн, следуя своему основному критерию — критерию внешнего оправдания, согласно которому из теории необходимо исключить понятия, не имеющие опытного подтверждения, отказался от представления об однородности времени и пространства. В теории относительности классические представления о времени и пространстве не просто отрицаются, а опровергаются, заменяются новыми, более высокого уровня — таким образом, чтобы прежние классические представления об абсолютном времени и пространстве оставались справедливыми для предельного случая малых скоростей. Но на этом Эйнштейн остановился и не захотел идти дальше по пути развития идеи относительности. Он не мог допустить, что сама определенность относительных интервалов времени и пространства должна считаться также относительной. Хотя ученый и считал, что время и пространство относительны, он продолжал в духе классической физики думать, что их величины определены абсолютным образом. Если же последовательно проводить идею относительности, то необходимо будет признать, что относительные сущности не могут быть абсолютно точно определены, а только относительно точно. Поэтому боровскую концепцию дополнительности следует рассматривать как более развитую. Принимая соотношение неопределенностей как факт, она автоматически включает в себя это необходимое продолжение идеи относительности времени и пространства.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1402
Бесплатно скачать Реферат: Основные идеи квантовой теории и ее эволюция